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Crossover Scaling of Wavelength Selection in Directional Solidification of Binary Alloys
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We simulate cellular and dendritic growth in directional solidification in dilute binary alloys using a
phase-field model solved with adaptive-mesh refinement. The spacing of primary branches is examined
for a wide range of thermal gradients and alloy compositions and is found to undergo a maximum as a
function of pulling velocity, in agreement with experimental observations. We demonstrate that
wavelength selection is unambiguously described by a nontrivial crossover scaling function from the
emergence of cellular growth to the onset of dendritic fingers. This result is further validated using
published experimental data, which obeys the same scaling function.
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In the process of casting, solidification often occurs as a
competitive growth of dendritic arrays. A paradigm used
in the study of competitive dendritic growth is two di-
mensional (2D) directional solidification. In this process a
binary alloy in a thin film geometry is solidified through
a fixed temperature gradient G, with the cooling rate
controlled by a pulling speed V. After becoming unstable
via the Mullins-Sekerka (MS) instability [1] the solidifi-
cation front develops complex dendritic patterns. The
morphology of dendritic structures controls the micro-
structure and solute segregation of the solidified alloy.

Directional solidification has been well characterized
both experimentally [2-10] and theoretically [11-16].
Theories for predicting length scale selection in dendritic
arrays often use geometrical arguments that relate the tip
shape to the fastest linearly unstable wavelength, which is
related to the process parameters [3,11,17]. While some
predictions are in qualitative agreement with experimen-
tal trends [17], they display a quantitative discrepancy
from experiments. Theoretical predictions are often vali-
dated by fitting data over certain ranges of pulling veloc-
ity [4]. Such procedures can be seriously hampered by the
limited range of data or crossover effects [4].

Crossover phenomena can be attributed to a competi-
tion between two or more physical mechanisms operating
on different scales. The crossover can be captured by
employing a technique known as scaling. One first at-
tempts to isolate the material/process-dependent scales,
and the behavior of the system emerges as a collapse of
the data that has been properly nondimensionalized by
these scales. Scaling occurs in phenomena such as surface
growth [18], critical phenomena [19], and dendritic
growth [20]. The attractive feature of the scaling approach
is that it quantitatively describes the behavior of the
system over many different regimes.

In this Letter, we examine wavelength selection in
directional solidification. We use a phase-field model
solved on an adaptive grid [21,22], allowing system sizes
several orders larger than the diffusion length and greatly
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reducing simulation time. We show that primary spacing
as a function of velocity for our simulated data and
published experimental data [4] is described by a cross-
over scaling function across the entire range from the
emergence of cellular growth into the dendritic regime.

Directional solidification was simulated using a phase-
field model for solidification presented in [23]. For the
case of unequal solid/liquid diffusivities, it uses an anti-
trapping flux to eliminate spurious kinetic and interface
stretching terms when recovering the corresponding
sharp-interface model in the limit when the interface
thickness is smaller than the characteristic scale of the
microstructure. This is an extension to the sharp-interface
asymptotics that recover the sharp-interface model in the
limit of vanishing interface thickness [24]. The model
describes solidification of a dilute binary alloy with a
partition coefficient k. It couples an order parameter ¢
to a concentration field C. The field ¢(X) takes on the
values ¢ = 1 in the solid phase, ¢ = —1 in the liquid
phase and interpolates continuously between these states
in the interface region. In this formulation the equations
of motion for the two fields are given by
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where e* =2(C/CY)/[1 +k— (1 —k)¢] and the so-
called antitrapping flux j= —DCq(¢)Vu — a, V(1 —
k)e*(9,¢)i with 71 = V¢ /|V |, the unit normal to the
contours of ¢. In the above, space has been rescaled by
W,, the interface width, time by 7, the interface kinetics
time and C} is the liquid phase alloy concentration. The
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dimensionless temperature is defined by a frozen field 6 =
(1 = k)(z — V,1)/Iy, where z is the pulling direction, [ =
M (1 — k)C,/(WoGA) is the thermal length, and G the
dimensional thermal gradient. This is justified since the
ratio of thermal to mass diffusion in typical alloys is of
order 10* [25]. The pulling velocity vV, = V.7/W, where
V, is the dimensional pulling speed. The constant M, is
the liquidus slope. The concentration and phase fields are
coupled via the constant A. The dimensionless diffusion
constant is D = D;7o/W5 where Dy is the diffusion
constant in the liquid which sets the diffusion length
Ip =2D/ V,. Two-sided diffusion is controlled by the
function g ) =0—-¢)/[1+k—(1—-ko]+ 1+
$)E/2 where &€ = D,/D; = 10~*. Surface tension an-
isotropy is defined in terms of 7. Specifically, A(7) =
[1—3e,{1 + (4e4/1 — 3ey)[(n,)* + (n,)*]}, where € is
the anisotropy constant. The anisotropic interface width
is thus defined as W(ii) = WyA(71) and the characteristic
time 7(i1) = 7oA(i1) [21-23,26]. Anisotropy appears in
both 7 and W in order to be able to make interface
kinetics term 8 = 0 in the sharp-interface limit.

The constants Wy, 75, A and the antitrapping flux
coefficient a, are inter-related by an asymptotic analysis
[23], which maps the phase-field model onto the sharp-
interface limit defined by: (1) solute diffusion in the bulk
phases, (2) flux conservation at phase-boundaries and (3)
the Gibbs-Thomson condition Cj, — Ceq = —d(i1)k —
B(R)V, with k the local interface curvature, d(ii) =
do[A(#1) + 0%A/d(cos ™ 'n,)?] where d, is the isotropic
capillary length and V is the normal interface speed.
Attaining the limit 8 = 0 requires dy/W = 0.8839/A,
D =~ 0.6267A, and a, = 1/(2+/2). Similar thermody-
namically consistent formulations are also possible for
low cooling rates [27].

The phase-field model was simulated in 2D using a
finite element method on an adaptive grid, with zero-flux
boundary conditions in both C and ¢ [21,22]. Solidi-
fication is initiated by a small amplitude, randomly per-
turbed solid-liquid interface. The initial solute profile
C(x%, 0) was set to a steady-state diffusion profile normal
to the interface, while ¢ (%, 0) = tanh[%/,/(2)] along the
normal to the interface. All system sizes considered were
in the range of 6400 to 12800 in the z direction and varied
from 1600-6400 in the transverse direction. The mini-
mum grid spacing was set to dx,,;, = 0.39 in all cases. We
used explicit time integration, with a time step dt =
0.008 as in Ref. [23]. The anisotropy €, = 0.0025, which
is close to that of PVA. We have shown elsewhere that our
results are essentially unchanged for smaller dx,,;, in the
case of both explicit [22] and implicit [20] time integra-
tion, and that our numerical methodology is robust to
rotations of our lattice by an angle of 77/4 [22].

We simulated directional solidification using the fol-
lowing three sets of parameters (G, A, Ct, k): (0.00191,
20, 0.13 mol%, 0.16), (0.0015, 3, 1.5 mol%, 0.15), and

(0.002, 1.3, 1.5 mol%, 0.15). Upon setting D; = 6.0 X
1079m?/s and d, =212 X 1078 m, appropriate for
PVA-ACE, W, and 7, are given by W, = (4.0 X
1077 m;6.05 X 1078 m;3.1 X 1078 m), and 7, = (3.3 X
1073 5;1.14 X 1079 5; 1.3 X 1079 ), set by the parameter
inter-relationships discussed above. We note that using
A = 20 enabled us to obtain data close to the planar-to-
cellular onset boundary. As the pulling velocity V,, (ori-
ented parallel to the surface tension anisotropy) was
varied we observed cellular structures at low values of
V,, while at high velocities we observed the emergence of
dendritic morphologies, as shown in Fig. 1. The micro-
structure interface was analyzed using a power spectral
analysis as in [28]. The primary branch spacing A; was
obtained by examining the power spectrum, P, =
<|hq|2), of the solid-liquid interface profile as a function
of time. The main peak position, which corresponds to
the visually observed primary spacing A;, was computed
using the definition kpean = (3 ,209Py/> >0Pg) =
271/ A,. The value k.., was plotted versus 1/ and ex-
tracted to 1/t — 0 to obtain an estimate of A,. Data for
kmean VS 1/t is shown in the insets of Fig. 1 for two
different morphologies.

Figure 2 shows the primary branch spacing A; vs
Vp for our computed data. For two of our data sets a
maximum occurs in A; as V, approaches the planar-
cellular onset. Furthermore, we found that this maximum
value occurs at V), satisfying Iy =~ I,. The presence of
such a maximum has been predicted theoretically [17]
and observed in several experiments [2,4]. The data
from Ref. [4] are shown in the inset of Fig. 2.
The three experiments shown are for SCN-0.25 mol%
Salol at G =13 K/mm, SCN-0.13 mol% ACE at
G =13K/mm, and PVA-0.13 mol%ethanol at
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FIG. 1. (bottom) Typical cellular structures for V=
150 wm/s and G = 1500 K/mm. (top) Dendritic morphology
with sidebranch structures corresponding to V, = 90 um/s

and G = 10 K/mm. The insets show K., Versus inverse
time. Units are in terms of the interface width W,,.
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G =18.5K/mm. For V,> V7, the data in Fig. 2 displays
the characteristic monotonically decreasing wavelength
as a function of velocity.

There has been a great deal of work on scaling relation-
ships for primary branch spacing in different morpho-
logical regimes ([8], and references therein). These
typically take the form A, =Al%lgdg . The prefactor
and exponents «, (3, and y can vary depending on the
semiempirical and/or geometrical arguments of a given
theory [3,8,17]. Moreover, the scaling form must neces-
sarily assume distinct exponents when different growth
regimes are present [3].

We describe the primary branch selection through a
crossover scaling function of the form

Mol f<l_r _ {_T>, (3)

where A, is the onset steady-state wavelength at the
transition from the planar-to-cellular instability and
I, =2D/V,, where V. is the velocity at the onset.
Figure 3 shows our computed data collapsed onto a scal-
ing function of the form above. Also shown on the scaled
plot is the experimental data from Refs. [3,4]. In each case
A. was selected so as to obtain the best data collapse by
plotting A = (A{lp)/(A.ly) against (I/lp — Ip/1},). The
plot is remarkable in that it predicts a scaling function
describing the primary spacing (A;) versus velocity over a
wide range of pulling speeds, thermal gradients, alloy
concentrations, and materials. The crossover function in
Fig. 3 covers the regime from cellular fingers and crosses
over into the dendritic regime.

300 —

X
o
=
IS
=

T

L

.- I

= 200~ O u] ; i
E X E | Lol
— 1e-05 0.0001
< O E 3 Vs
[]
o A=1.3, 1.5%mol, G=.002w
X A=3, 1.5%mol, G=.0015w .

® 1=20, 0.191%mol, G=0.00191w
Jool— e P

M| L L

0.01

0.1
V(W)

FIG. 2. Computed primary spacings corresponding to pa-
rameters listed in the text, error bars included for a single
data set. The inset shows experimental primary spacing data
obtained by digitizing data from Ref. [4].

Figure 4 compares our values of A, 10 Aypeory =

Amsltr(V, = V,), where A, denotes the MS wave-

length at the planar-to-cellular onset boundary (V, =
V.), and Ig(V,) is a velocity-dependent generalization
of Ir, implicitly determined from Iz = [;[1 —
exp(—ItrV,/D)]. Physically, Itg(V),) is proportional to
the amplitude of cellular fingers such that It = I;[1 —
I;,/(217)] at the onset of cellular growth, while in the
opposite limit (V,, > V), ltg — I7. This form of Ayeqry 18
similar to a previous analytical prediction of A, derived
geometrically by approximating the tip shape and calcu-
lating the tip undercooling [17]. In the same figure we
compare our extracted A, to another theoretical predic-
tion, Apeory = (dolply)'/?, the geometric mean of the
three length scales, empirically suggested to be propor-
tional to the wavelength at the planar-to-cellular onset
[8]. Figure 4 suggests that for both cases A, = aA.(1 +
Bdy/ Apeory)» Where a and B are material independent
constants. These results imply that A, © Ay, at large
wavelengths. At small wavelengths, analytic predictions
differ from our findings. This is likely due to the fact that
fitting an arm to an ellipsoid of revolution is only true at
large wavelengths.

We also examined the tip undercooling A, as a func-
tion of pulling velocity as in Ref. [29]. We found that A,
decreases monotonically toward a plateau value for the
largest V), simulated. The reason is that at low V, the
diffusion length increases as the thermal length Ix(V,)
decreases, not allowing the tip to escape its impurities.
The front thus falls back from the pulling gradient, in-
creasing Ag,. As V), increases, Itg(V),) increases toward
Iy, while I, decreases. In this regime the interface is free

to catch up to the pulling gradient, decreasing Ag,. As V),

+  SCN-Salol 0.25 mol% *,
= SCN-Acetone 0.13 mol% %
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FIG. 3. Computed data and experiments [3,4] for SCN and
PVA scaled to material properties, producing a single scaling
function for the primary branch spacing A;
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FIG. 4. A plot of A./d, versus \/Anltr(V,) (lower line), and
(dolply)'/3/d, (steeper line).

increases further we expect the undercooling to further
increase, eventually reaching the dendritic-to-planar
boundary as [ approaches d [30].

Our scaling function describes wavelength selection in
directional solidification with the anisotropy parallel to
the growth direction. We have explicitly demonstrated this
in 2D, and expect to find scaling collapse in 3D by
repeating our procedure. We also expect the scaling func-
tion to be very robust with respect to changes in the solid
diffusivity and/or magnitude of surface tension anisot-
ropy, as they simply renormalize V. and A.. As an ex-
tension of this work, we are currently investigating the
scaling behavior of cellular growth as the pulling direc-
tion is tilted away from the surface tension anisotropy
direction; in this case, competition between the thermal
gradient and surface tension anisotropy can lead to com-
plicated spatiotemporal structures known as ““seaweeds,”
as demonstrated recently in experiments [10] and simu-
lations [16].

To summarize, we have simulated wavelength selec-
tion of cellular patterns in 2D directional solidification
using the phase-field method solved on an adaptive grid.
The selected wavelength displays nonmonotonic behavior
as a function of pulling speed; in particular, it displays a
maximum for intermediate values of pulling speed. Our
scaling function shows the collapse of both our computed
data and previously published experimental data [4] onto
a single crossover scaling function. We strongly believe
that the scaling approach undertaken in the present work
can be further extended into a predictive tool for micro-
structure selection in solidification processing of binary
and multicomponent alloys.
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