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We introduce a model of two coupled reaction--diffusion equations to describe 
the dynamics and propagation of flame fronts in random media. The model 
incorporates heat diffusion, its dissipation, and its production through coupling 
to the background reactant density. We first show analytically and numerically 
that there is a finite critical value of the background density below which the 
front associated with the temperature field stops propagating. The critical 
exponents associated with this transition are shown to be consistent with mean- 
field theory of percolation. Second, we study the kinetic roughening associated 
with a moving planar flame front above the critical density. By numerically 
calculating the time-dependent width and equal-time height correlation function 
of the front, we demonstrate that the roughening process belongs to the univer- 
sality class of the Kardar-Parisi-Zhang interface equation. Finally, we show 
how this interface equation can be analytically derived from our model in the 
limit of almost uniform background density. 

KEY WORDS: Flame fronts; kinetic roughening; KPZ equation; percolation 
transition; reaction-diffusion systems. 
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the two phases. This front can play a crucial role in determining the 
dynamics of the transition. There are many systems, arising in various 
areas of science, that are characterized by the emergence of such a front, 
such as domain walls in the kinetics of phase transitions t~) and systems 
undergoing chemical reactions. <2) This paper will study a common but a 
particularly spectacular example involving the emergence of a reaction 
front in combustion, where a flame front forms and can propagate in a 
medium of randomly distributed reactants. (3~ 

A popular description of moving fronts involves using discrete cellular 
automaton models or coupled map lattices. Examples include wave 
propagation in excitable media t4) and front propagation for the description 
of the spread of epidemics, ts) Despite their superficial simplicity, such lat- 
tice models can exhibit complex behavior. A good example is a recently 
studied coupled map lattice with oscillatory local elements, which has been 
shown to exhibit a wide variety of complex dynamics, tr~ In particular, the 
moving front associated with the model was shown to exhibit kinetic 
roughening analogous to pure interface growth equations, m 

On a more microscopic level, an approach based on continuum 
reaction-diffusion equations has been extensively used in the chemical 
literature/2) Often such nonlinear partial differential equations can be 
studied from the nonlinear dynamics point of view to reproduce many 
experimentally observed phenomena, such as spiral waves and chemical 
oscillations, tTI In the area of combustion of laminar flames in continuous 
media, the work of Sivashinsky t8"9) demonstrates how such equations can 
be qualitatively mapped into nonlinear interface equations describing the 
propagation of flame fronts. Despite much work, however, many properties 
of such equations and their connection to interface growth equations 
remain poorly understood, as does their precise quantitative relationship to 
combustion. 

Lattice models similar to those studied studied in the papers above 
have also been used to study "forest fire" models. ~'~ However, no 
particular attention has been focused on the properties of the reaction 
front. Indeed, the majority of automaton models of forest fires do not 
include flame fronts. 

In this work our aim is to study systematically the dynamics of slow 
combustion by deriving--from the microscopic physical principles behind 
combustion--a phase-field reaction-diffusion model. 5 Some of these results 
have been given in a short paper, t~4~ This model includes, in a realistic 
manner, the diffusion of heat, as well as the dissipation and production of 
heat through an activated chemical reaction occuring within the background 

5 By slow combustion, we mean that shock waves play no role in the process. I t3) 
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density field. While our model also incorporates the effect of convection, 
this paper will focus on combustion in the absence of it. The model is 
investigated both analytically and numerically, using methods developed in 
the study of phase transitions to unravel the asymptotic behavior of a 
self-sustanining combustion front growing within a medium of randomly 
distributed reactants. We examine the dynamics of the front from the per- 
colation point of view, as well as that of kinetic roughening of interfaces. 
Both the formation of the front, as well as its universal dependence on 
length and time are examined. Most importantly, we show that the com- 
bustion front exists only when the reactant concentration is greater than a 
critical value c* > 0 in two dimensions. Moreover, we estimate the scaling 
exponents associated with the disappearance of the propagating front, and 
show that the behavior near c* is consistent with that of a mean-field per- 
colation transition. Above the critical concentration, we find that the com- 
bustion front exhibits kinetic roughening. We then show both analytically 
and numerically that the kinetic roughening is described by the nonlinear 
Kardar-Parisi-Zhang (KPZ) interface equation. (~5) 

In order to be able to refer to a specific example when dealing with 
flame propagation, we will motivate it below in the context of forest fires. 
The physics associated with forest fires has recently received increasing 
attention (~~ due to the potential relationship to the concept of self- 
organized criticality, introduced by Bak ~]6~ and collaborators. In most 
cases studied, forest fires have been modeled through the use of cellular 
automaton models on a lattice. ~'~2) In these works a collection of trees 
which can burn and subsequently reappear is considered. In contrast, in 
this work reactant cannot spontaneously reappear and the reaction front is 
defined only as long as there is a reactant present. Most importantly, our 
model is constructed from the fundamental physics of reaction-diffusion 
systems, rather than by introducing lattice rules. Thus, it realistically cap- 
tures the various physical phenomena associated with reaction fronts. 

This paper is organized as follows. In Section 2 we derive our phase 
field model. In Section 3 we consider the propagation of the flame front, 
and argue that there exists a percolation transition in the model, corre- 
sponding to a critical value of the density. The nature of this transition is 
examined first in the mean-field limit, and then numerically. In Section 4 
the kinetic roughening of a planar reaction front is studied. We first study 
it numerically, then we derive an approximate equation of motion for the 
interface which i~ shown to be identical to the KPZ equation in the long- 
wavelength limit. Finally, Section 5 concludes and summarizes the results 
of this paper. 
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2. THE M O D E L  

Our model describes flame propagation through the dynamics of two 
fields inherent in the combustion process: the thermal field and a field 
describing the concentration of reactants. Specifically, it consists of two 
coupled reaction-diffusion equations, one for evolution of the thermal field 
T(x, t) at position x and time t, and the other describing the evolution of 
the reactant concentration C(x, t). This model realistically incorporates the 
interplay between thermal diffusion and local concentration fields. Within 
our model, variations in T(x, t) are due to three effects: (i) thermal diffu- 
sion through the medium in which the flames propagate; (ii) Newtonian 
cooling due to coupling to a heat bath; and (iii) generation of heat, limited 
by activation, from the reactants. The second effect, Newtonian cooling, 
describes the simplest manner in which we can incorporate the effect of a 
background heat bath fixed at a temperature significantly lower than the 
rest of the reaction area. 6 While this provides a sensible and physically 
motivated method of coupling reaction and diffusion to a thermal bath, it 
should be noted that it may be worthwhile to investigate other stabilizing 
mechanisms. The amount of heat generated in an activated process depends 
on the type of combustion system, or more generally reaction-diffusion 
system, one is examining. We describe the evolution of the temperature 
field by 

OT 
~-[= D V 2 T - F [  T - To] - V .  VT + R(T, C) (1) 

where D is the thermal diffusion coefficient, F is the thermal dissipation 
constant, and To is the constant background temperature of the bath to 
which the combustion process gives up heat through Newtonian cooling. 
The term R(T, C) is responsible for chemical activation. For completeness 
we have included convection due to an external source V, but we shall 
hereafter set this term to zero. 

Nonlinearities enter through the reaction rate R(T, C), which is 
limited by the local concentration of reactants C(x, t), where C(x, t) 
represents the local reactant fraction. The specific form of R(C, T) is 
dependent on the type of combustion process in question. Empirically, heat 
production in any combustion process is give by the exothermic reaction 

R(T, C) oz T~'e-a/rC (2) 

6 Newtonian cooling implies heat can be removed without diffusion. This stabilizes the 
constant-velocity motion of the flame. If, instead, only diffusion was present, we expect a fiat 
front to be unstable by the Mullins-Sekerka mechanism. 
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where TM ~=tP( l )  and A is the activation energy for combustion 
(Boltzmann' constant has been set to unity). As the exponential in Eq. (2) 
must be of order one, the scale of the heat production is set by the activa- 
tion energy, as A s. Similarly, the time constant in front of the propor- 
tionality sign will dictate the time scale of the burning process. It should be 
noted that while the precise form of 0c in Eq. (2) sets the energy scale in the 
problem, the main dynamics of burning is controlled only by the Arrhenius 
f o r m  e-A/T .  7 

Here we use 0c = 3/2. This can be motivated by a simple model where 
reactants burn in steady state with an ideal gas, and chemical by-products 
are ignored. The net effect of the reaction is to heat the air surrounding the 
reactant, elevating it to the (steady-state) temperature of combustion. The 
flux of molecules striking the reacting surface is N~ = n(T/8zcm) 1/2, where n 
is the number density of air, and m is the mass per molecule of air. Since 
combustion is an activated process, the probability of a molecule reacting 
is proportional to e -AIr where, again, A is the activation energy of the 
reaction. Thus the total number of molecules reacting is N r = N , e  -AIr. 
Since the combustion process occurs in a steady state with the surrouning 
air, the energy flux from the reactant is limited by the local energy flux 
of air molecules striking it, given by 3T/2 per molecule. Hence the 
energy Q released per unit reactant area and per unit time is given by 
Q=(3T/2)  N,e -AIr. Denoting the typical area by a, and the typical 
volume by v,, the total energy produced per unit volume and per unit 
time in a region of local reactant concentration C(x, t) is given by 
Pc=(Qa,/u,)  C. For a cylindrical reactant geometry where the height is 
much greater than the radius, a,/u~ = 2/r. We then write 

Pc = ( 3n/2r )( 2/zcm )1/2 q(T) C (3) 

where 

q(T) = Ta/2e-A/r (4) 

Thus the local energy produced per unit time and volume is proportional 
to q(T), where the additional factor T 3/2 sets the scale of the energy, we 
model the reaction rate in Eq. (1) as 

OC 
R=22q(T)  C =  -21 c3---]- (5) 

7 Simpler models without an Arrhenius form, where the reaction is given by a polynomial, are 
also of interest in the combustion literature. It should be noted that some of the results from 
those investigations have wider applicability than might otherwise be expected. See ref. 17 
and references therein. The larger issue of the simplest model of combustion necessary to 
describe some phenomena, in essence the question of universality classes for combustion, is 
an important one which merits further study. 

822/81/3-4-15 
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where 21 is a dimensionless constant. The constant )-2 is simply the prefac- 
tot  of Pc divided by cpp and multiplied by A 3/2, where cp is the specific 
heat and p is the mass density of air. This gives us the dimensionless tem- 
perature change per unit time corresponding to the heat production Pc. 
This completes the formulation, which thereby gives a rough estimate of 
the parameters involved in our model. 

The main emphasis in the present work will be for cases where the 
initial distribution of the concentration field C(x, t = 0 )  is random, and 
where no complete analytic solutions of Eqs. (1)-(5) are available. 

For the remainder of this, we consider a two-dimensional geometry, 
where a front initially parallel to the y axis propagates in the x direction. 
The dimensionless parameters are set to D = 0.2, F =  0.05, To = 0.01, and 
)-1 = 8,  and time is measured in units of those for the reaction, 2~/).,_, and 
length in units of the dimension in the reactant. In our numerical work, we 
initially distribute the reactant randomly such that at a given latice site 
C(x, t) = 1 with probability c and zero with probability 1 - c, in which case 
the average spatial concentration of reactants is c. The mesh size in space 
is set to Ax= 1, while the mesh size in time is At = 0.01; tests of smaller 
mesh sizes give qualitatively similar results. It is useful to relate these 
choices of parameters to the specific example of a forest fire. For  example, 
the constant A,_ can be found in terms of the density and specific heat 
of air and the activation temperature of wood. In physical units, we 
have D ~ l m 2 s  -~, F ~ 0 . 0 5 s  -~, T o ~ 0 . 1 K ,  and c p ~ 5 J g - ~ K  -~ and 
A ~ 500 K. With the exception of To, these are comparable to real systems. 
Our small To has been chosen to give enchanted cooling and hence keep 
diffusion fields relatively short ranged as compared to the lattice sizes 
used. This allows us to perform our numerical integrations with good 
accuracy without having to simulate extremely large systems. Test runs 
show that our results are relatively insensitive to the choice of To, as 
one would expect provided To is much less than the reaction energy heat 
released A. 

3. D Y N A M I C S  OF FRONT PROPAGATION 

3.1. Quali tat ive Features of Flame Fronts 

Before presenting a quantitative analysis of Eqs. (1) and (5), it is use- 
ful to qualitatively examine the nature of their solutions. Due to the 
activated nature of the combustion process, we expect that a self-sustaining 
propagating combustion front requires a sufficient amount of heat to be 
released during combustion. The source for this heat is dependent on the 
reactant concentration c. Since activation limits the production of heat, we 
expect the existence of a critical concentration c * >  0 below which the fire 
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will spontaneous ly  burn  out  due to insufficient heat  product ion.  That  is, for 
c < c* the average velocity of  the front is zero, while it is nonzero  for higher 
concentrat ions .  F o r  c > c* the react ion front can be identified by a single- 
valued function which will be used in all quant i ta t ive  analysis. We define 
the local posi t ion of  the interface h(y ,  t) as the pos i t ion  x where the tem- 
pera ture  field is max imum at a given t ime and coord ina te  y. The variable  
h(y ,  t) is a single-valued function of  y. Thus,  the average velocity of  the 
interface is given by v(c) = (Oh(y ,  T) lOt) .  

(a) 

(b) 

Fig. I. The temperature field T(x, y, t) for a moving fire front in a uniform, random forest 
with (a) c= 0.65 and (b) c =0.225. The dark pixels correspond to the temperature field; the 
higher the temperature, the darker the pixels. The interface h(x. t) is defined by the curve out- 
lined by the darkest pixels. The light grey pixels above the interface represent reactant (trees). 
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In Figs. l a and l b typical configurations of the propagating tem- 
perature field are shown for c = 0.65 and 0.225. Equations (1) and (5) were 
solved on a lattice using periodic boundary conditions in the y direction 
and fixed boundary conditions in the x direction. The size of the system is 
L in the y direction, while in the x direction it well exceeds the total diffu- 
sion length of the propagating T field. The T field is always contained 
within the system size due to a tracking program that continuously follows 
the flame front, which is moving toward the right. The dark pixels 
correspond to the temperature field, with the highest temperature corre- 
sponding to the darker pixels. The interface h(x, t) is outlined by the 
darkest pixels. The light grey pixels to the right of the interface correspond 
to C(x, 0) = 1. The fire is started at the far left by igniting a complete row 
of"trees" at y = 0. After a short transient, the propagating fire front assumes 
a steady-state average velocity v(c). For lower densities approaching about 
0.2, the front becomes very irregular and finally stops propagating. This is 
in agreement with our qualitative arguments; below we will present a quan- 
titative analysis of this phenomenon. 

3.2. Mean-Field Theory 

To quantify the behavior of the flame front c*, we first examine the 
mean interface velocity with the particular aim of identifying the value of 
c*. It is instructive to begin our investigation with a mean-field model. 
Consider a uniform distribution of reactants whose initial density variable 
C(x, 0) at every site is now equal to a constant c. In this description there 
are no longer variations in T or C in the y direction. Assume there exist 
mean-field temperature and concentration fronts T,, and C,, moving with 
constant velocity v,,( c). Using OT/Ot = - v , ,  OT/Ox and OC/Ot = - v , ,  OC/Ox, 
we can write the mean-field corresponding to Eqs. ( i)  and (5) as 

02T,, OT,, 
D ~ +  v . , - ~ x -  F [ T - -  To] + 2 ,  C. ,q (T . , )=  0 (6) 

and 

0 C m 
v ,, -~x - q ( T ,, ) C,  , -- O (7) 

We have solved this mean-field model numerically, using the same 
procedure as described in Section 3.1, with C(x, O)= c. We solved for the 
mean-field front velocity, obtaining a dependence of v,,(c) on c of the form 
v,,(c) oc ( c - c * )  r near c* =0.19, where r  
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The existence of a finite critical concentration c* can also be seen by 
examining Eq. (6). Integrating Eq. (6) from - o o  to + ~ ,  we obtain 

f~  [2, C,,,q(T,,,)--F(T.,--To)]dx=O 
- -  o 0  

(8) 

Equation (8) tells us that in order to have a steady state, the energy 
produced by activation must balance that lost due to thermal dissipation. 
There are two points where the integrand of Eq. (8) is identically zero. The 
first Xh lies behind max(Tin), while the second x, lies ahead of it. This point 
x = x, can thus be defined via 

21C,,,(x,) q(T,,,(x,)) = F( T , , ( x , ) -  To) (9) 

where for values of c* we have found that C,,(x,) ~ c. Inspection of Eq. (9) 
shows that T,,(x,) increases as C,,(x,)"~c decreases, Moreover, max(T,,)  
clearly decreases as c decreases. Thus, since T,,(x,)<. max(T,,) there must 
exist a c = c* below which Eq. (8) no longer holds. 

The exponent ~b = 1/2 in the mean-field limit can also be obtained from 
the following argument. Expanding q(T) in Eq. (6) around T, (e ) -  T,,(x,) 
and taking C,,(x) to be a constant, near x,,  equal to C,(c)=-C,,,(x,), we 
find that the leading edge of Tm goes as 

v , ,+{v~,_4D[21C,  q , ( T , ) _ F ] } , / 2 x )  
T,, ~ exp - 2D (10) 

By imposing the requirement that the leading edge does not develop any 
oscillatory components, we obtain the condition 

v,,, >1 {4D[21C,q'(T,)  - F] } u2 (11) 

Assuming analytic behavior of C,(c) and Tl(c) near c*, we write them as 

dT,(c*), , ,  
T , ( c ) = T , ( c * ) + ~ - ~ - - c t C - C  J (12) 

and 

dC,(c*) 
C,(c) = C,(c*) + ~ ( c -  c*) (13) 

In regions ahead of the temperature field where thermal dissipation exceeds 
thermal activation (x >~x,), we have already noted that the concentration 
profile C,, will not change from its original value c. Thus, around x = x, we 
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can approximate C,(c)~c. Using this approximation in Eq. (13), which 
along with Eq. (12) is substituted into Eq. (11), we obtain 

v,, >i A(c - c*)1/2 (14) 

which yields ~b = 1/2 and implicitly defines c* through c* = F/[)L t q'( T,(c*))] .  
The constant 

A= {4D2, I q'( T,(c*) ) + c*q"( T,(c*) ) ~ l  t '/2 (15) 

Although we could have expanded the q(T) term of  Eq. (6) about  any 
point, choosing x, gives the maximum lower bound in Eq. (11 ). This result 
is also supported numerically. This analysis leading to Eq. (14) is 
analogous to that used in ref. 5 to find front velocities in the context of  
epidemic models. Near  c* we expect v(c) to attain its lower bound,  15) 
according to Eq. (14). 

"D 
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1.5 
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v 50 

I,, '1,,' i' !,1',, �84 ' I ' ' ' I ' ' 

O0 , , , I , , , I , , , I , , , I , , 
0.2 0.4 0.6 0.8 

C 

Fig. 2. Scaling of the interface velocity to the form v(c)~ (c-c*)~ in the case of a random 
initial reactant distribution. This curve was fit using concentrations up to c=0.85 and 
L=200. The inset shows data of (h) vs. t for c=0.21, 0.22, 0.23, 0.24. 
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3.3. Numerical Results for Front Propagation 

Equations (1) and (5) were numerically solved on a lattice under the 
conditions described above, with a uniform random distribution of density 
with ( C(x, t = 0))  = c. We found that for large concentrations, the mean 
interface velocity v(c) is again constant after an initial transient, and 
increases with c. The transient increases as c* is approached. As in the 
mean-field case, we expect that the vicinity of c*, the asymptotic velocity 
is defined by the relationship v ( c ) ~ ( c - c * )  ~, where ~b is a scaling expo- 
nent. Specifically, the numerical determination v(c) in the case of a random 
background gave c* = 0.19 + 0.02 and ~b = 0.46 + 0.09 for a system L = 200. 
The scaling of o(c) in the case of a random initial distribution of reactants 
is shown in Fig. 2. 

To incorporate finite-size effects in a systematic fashion, we use the 
scaling form 

v(c, L) ~ L-~/vI2[ (c - c*) Ljlv] (16) 

I 

0 

- 1  

,--a 

0 

- 3  

i 

- 4  

I i i 

' ' ' I ' ' ' I ' ' ' I ' ' ' I ' 

e~ 
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, I 
- 6  

~ 

0.5 

0.2 0.4 0.6 0.8 
C 

i i , I , , , I i i , I , 
I 

- 4  - 2  0 
]n((o-o'/u/"/ 

Fig .  3. F in i t e - s i ze  s c a l i n g  o f  o(c,L). T h e  m a i n  f igu re  s h o w s  ln[v(c,L) L ~/'] vs. 

In[(c--c*)L~/"]. T h e  inse t  s h o w s  the  u n s c a l e d  d a t a  fo r  s y s t e m  sizes L = 4 ,  6, 8, 24,  44,  54,  
64,  104, a n d  2 0 0  f r o m  r i g h t  to  left. Sizes l a r g e r  t h a n  L = 2 4  lie a l m o s t  o n  the  s a m e  cu rve .  All  

s y s t e m s  c o n t a i n  d a t a  f o r  c u p  to  a n d  i n c l u d i n g  c = 0.85.  
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This is the same as that  used in percolat ion theory/ ts j  Here v is the correla- 
tion length exponent  ~ ~ (c - c*) -~, and the scaling function s'2(x ---, oo) ~ x ~. 
We note that  we can relate ~ to the percolat ion transit ion exponents 
through o( c ) ~ ~/r ~ ( c - c* ) J - "  = (c - c* ) ~, where A is the critical slo wing 
down exponent. In Fig. 3, we show numerical results for ln[v(c, L) L ~/~] vs. 
ln[(c-c*)L ~/'] for nine different system sizes ranging from L = 4  to 
L = 200. Using c * =  0.19 and ~b = 0.46, we find that  the best collapse occurs 
for v = 0 . 6 _ 0 . 1 .  

It  is striking that  the results for the critical exponents obtained here 
are consistent with the mean-field theory of percolation, for which A = 
2~b = 2 v =  1/m) Qualitatively, heat p ropaga t ion  in our model  is limited by 
a percolat ion lattice, provided by the r andom density field c. Below c* the 
connected cluster available for front p ropaga t ion  breaks down, and the fire 
spontaneously dies out. The mean-field nature of  the critical exponents is 
due to the relatively long range nature of  the diffusion field associated with 
T as compared  to the typical front widths for the system sizes studied here. 

4. KINETIC ROUGHENING OF THE FLAME FRONT 

4.1. Numerical Results for the Front Roughening 

For  c>c* it is clear from Fig. 1 that  the propagat ing  interface 
associated with T develops large fluctuations and appears  rough. We can 
characterize the interface by defining its width through w = < ( h -  <h >)> 1/2. 
Rough interfaces often satisfy the scaling relation t15'2~ 

w(t, L)~ tPf (-~) (17) 

for large L and t, where f(x---, o 3 ) =  x-Z~: and f(x ~ 0 ) ~  const with X = zfl. 
An impor tant  example of  this is the K a r d a r - P a r i s i - Z h a n g  ( K P Z )  interface 
equation, ~151 for which the exact and nontrivial  exponents are f l =  1/3, 
z = 3/2, and X = 1/2, for a one-dimensional  interface (growth front). In our 
case, for any given value of c > c* we expect the width to obey the scaling 
form, i.e., for large t we expect w ~  t # in the limit t ,~ L--. We similarly 
expect that  when t >> L ~ the width will scale with the system size via w ~ L z. 

These scaling forms for the interfacial width can be derived from a 
more  general crossover scaling scaling ansatz that  couples time, system 
size, and concentration. Near  c = c* this scaling form is written as 

w(c't'L)=~(c)W( tz(c)'f(c)L ) (18) 
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where W(x,  y)  ~ ws(x) for x/y-- ~ 1, with x A x )  ~ x p for 1 ,~ x ~ y~, and 
W(x,  y)  ~ wL(y)  for x /y :  ~> 1, with wL(y)  ~ yZ for y --* oo. Nea r  the percola-  
t ion threshold r ( c ) ~ ( c - c * )  -~  and ~ ~ ( c - c * )  -~. With these forms of  
z(c) and ( (c) ,  the scaling function in Eq . (18)  couples t, c, and L 
ana logous ly  to the way in which t, c, and cluster mass are coupled when 
describing t ranspor t  on percola t ion  clusters, t2~ 

In the limit t ~ [r(c)/~:(c)] L= Eq. (18) reduces to 

w(c, t)--~(c)w~. (r~c)) (19) 

where as x~> l ,  x s ( x ) ~ x  p, leading to w ( t ) ~ t  p. In Fig. 4 we show the 
scaled width w s plot ted vs. the scaled time t.,. = t/r for seven different values 
of  c with L = 200. F o r  this L, finite-size effects seem to p lay  no discernible 
role. The inset shows the original  da t a  set. A transient  t ime t o has been 
subtracted,  which has been determined from the point  where v(c) reaches 

1.5 

1 

0.5 

00 500 1000 1500 2000  2500  
ts 

Fig. 4. Crossover scaling function w~ plotted vs. t s = t/r. The inset shows the concentration- 
dependent width w(e, t) for r 0.5, 0.6, 0.7, 0.75, 0.80, and 0.85 from top to bottom. The 
roughness increases with decreasing density. A transient time to and the corresponding offset 
w 0 have been subtracted from each w(c, t). 
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Fig. 5. A log-log plot of the scaling function w s of Fig. 4. The inset shows the effective fl as 
a function of time. The straight line represents fl = 1/3. 

a constant  value. F r o m  the fitted ~(c) and r(c) for the da ta  collapse we 
cannot  accurately estimate v and A, a l though they are again consistent with 
the mean-field values. 

F rom the scaled data  of  Fig. 4 we can determine the roughening 
exponent  ft. The running slope of the data  from a log w, vs. log ts gives an 
effective exponent  fl(t), which is shown in Fig. 5. After an initial transient 
the slope clearly tends toward fl = 1/3, which is the exact K P Z  value. We 
have also analyzed the data  by calculating the difference w ( b t ) - w ( t ) =  
A(b p -  I ) t  p, were b is a constant  (e.g., b = 2 ) .  F r o m  this method we find 
fl = 0.34 _+ 0.04, which is our  best estimate for the exponent.  

When t>> [~(c)/~--(c)] L z Eq. (18) reduces to 

w(c, L)  = ~(c) wL (20) 

In this limit the width saturates due to finite-size effects and thus Eq. (20) 
is independent  of  time. In the limit of  large L the saturated width satisfies 

w(c, L ) ~ L  z (21) 
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Plots of In(w) vs. In(L) for c = 0.5 and 0.85. The slopes give, respectively, 2' = 0.5 + 0.1 
and 2' = 0.5 + 0.3, both consistent with the exact KPZ value of 2' = 1/2. 

Using system sizes L = 50, 76, I00, 150, 200, 300, 400, and  600, we obta in  
Z = 0 . 5 + 0 . 1  for c = 0 . 5  and X = 0 . 5 _ 0 . 3  for c=0 .85 .  The plots  yielding 
these values of  X are shown in Fig. 6. In both  cases the value of  X is con- 
sistent with the exact K P Z  value of  ;( = 1/2. O u r  results for fl and Z are 
therefore in good  agreement  with those of  the K P Z  equa t ionJ  15~" 8 

We also note  that  a plausible way of  expressing the crossover scaling 
function, for large L and t, is in the form 

( , ) w(t,  c, L ) ~  ( c i c * )  J p - v  tPF ( c - - c * )  . . . .  ~ L -~ (22) 

where F( x --* ~ ) --, x -z/~ and F( x ~ 0) --* const,  with z =X/ f t .  Equat ion  (22) 
gives explicit ly the c-dependent  general izat ion of  the scaling form of  
Eq. (17). We ha~'e not, however,  been able to test this par t icular  ansatz 
with our  present  data. 

s Recently Zhang et al} TM have interpreted the results of burning sheets of paper in terms of 
kinetic roughening. They found 2' ~ 0.71, which is larger than we find. This may be due to 
the correlated distribution of fibers within paper. 
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Fig. 7. C o r r e l a t i o n  func t ion  G(r ,  t) a n d  the  fit ted func t ion  Gr{r, t} (sol id l ine) ve r sus  r at  

different  t imes  for c = 0 . 5 .  T h e  h i g h e r  c u r v e s  r ep r e sen t  l a rge r  t imes.  T h e  f i t t ing func t ion  is 

g iven  in the  text.  T h e  inset  s h o w s  Xf(t) ve r sus  t i m e  wi th  the  s t r a igh t  line r e p r e s e n t i n g  the  exac t  

K P Z  v a l u e  o f  Z =  1/2. 

Another quantity that can be used to characterize kinetic roughening 
is the equal-time height difference correlation function, which is defined by 

G(r, t) = ( [ h ( y  + r, t) - h(y ,  t)] 2) (23) 

Asymptotically G(r, t) satisfies 

G(r, t) ~ r 2z (24) 

for r ~ t  1/=, while for r~>t 1/: (with t fixed) 

G(r, t) ~ G( t) ~ t 2p (25) 

While these limits can in principle be used to extract Z and fl, determining 
the asymptotic limits poses practical problems. They have been overcome, 
however, by developing a functional fitting ansatz for G(r, t). I-~s~ This 
ansatz can be used to fit the whole function G(r, t) and allows the extrac- 
tion of estimates for all the scaling exponents fl, X, and z. We have adapted 
this method by using the fitting form 

Gf(r, t) = A(t){ t a n h [ B ( t )  1/" r 2zjl'~/'] } ' (26) 
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Fig. 8. Correlation function G(r, t) and the fitted function Gs(r, t) (solid line) versus r for 
c = 0.85. See text for details. 

where A(t), B(t), and Zi(t) are fitting parameters, while x is fixed. In the 
limit 1 ~ L: ~ t, Gy(r, t) = A ( t )  B( T) r 2zlt'l, which allows the estimation of 
X,~Zy(t), as discussed below. In the other limit of  r>>t a/--, G y ( r , t ) ~  
A(t)  ~ t 2p. We have not tried the latter estimate here, however. 

In Fig. 7 the correlation function is plotted at various times for c = 0.5. 
The data are fit to the form of Eq. (26). The value of  x is first determined 
from fitting G(r, t) at one particular time, and is subsequently held fixed for 
all other times. For  c = 0.05, x = 3 gives the best results. The inset of  Fig. 7 
shows Z r(t), with the solid line representing the exact K P Z  value of;( = 1/2. 
After a short initial transient, Zs(t) becomes roughly a constant and is 
consistent with the K P Z  value. In Fig. 8 the correlation data for c = 0.85 
are shown. For  c = 0.85 we found that x = 4 fits the data most  accurately 
for all times. F rom the inset of  Fig. 8, we see that ;(f(t) is again consistent 
with 1/2. 

4.2. Derivation of the Front Equation 

For  c near unity, it is possible to derive analytically an approximate 
equation of  mot ion describing the flame front of  our  model of  Eqs. ( 1 )-(5). 
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We can imagine the temperature field as being composed of the steady- 
state mean-field T,,, plus a small perturbation fiT caused by nonuniformities 
in the reactant distribution. This approximation becomes more accurate as 
C(x, 0) approaches a uniform distribution. Also, as we take the system size 
to infinity, we can systematically average out local fluctuations along the 
interface and retain an equation governing the long-wavelength dynamics 
of the interface. 

We first introduce a relative coordinate system by the transformation 
x = X(u, s) and y = Y(u, s), where u(x, y) = const are a set of planes parallel 
to the interface, while s is the arclength along the constant-u plane. 
Defining u,(s, t)= Ou/Ot, we write the equations for T and C in these coor- 
dinates as 

OT OT 
-x - :+u ,~ -=DV~_ ,T-F[T-  To] + 2,q(T) C 
O I  U U  - 

(27) 

OC 
u, ~u = -q( T) C (28) 

where the V~,,.,. operator in Eq. (27) is given by 

7~,..~=ff-USu~ + K(s) -t Os 2 (29) 

and K(s) is the curvature. 9 In Eq. (28) we assume that the reactant field 
changes much faster than the thermal field, thus dropping the OC/Ot term. 
This is quite common in reaction-diffusion systemsJ 261 

Solving first Eq. (28), we obtain 

C=q(s , t )exp( i ,  ~, q(T(z,s,t))u,(s, t) dz) (30) 

where q(s, t) comes from the boundary conditions, which demand that 
C(oo, s, t) be either zero or one, with the same distribution as the original 
C field. Statistically, r/(s, t) is a Bernoulli random variable with ( r / )  = c. 
The boundary condition as u---, - ~  is that C vanishes. This is satisfied 
since u, = --v, where v is the normal velocity. 

Next we examine Tequation. We represent the T field as T =  T,,(u)+ 
6T(u, s, t), where T,,, is the mean-field solution. Substituting this expression 
for T and the form of C given by Eq. (30) into Eq. (27), we obtain, to first 
order in 6T, 

See, e.g., refs. 24. A clear description of this technique is given by Rogers) TM 
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OT,,, D 02T" + DK(s) 07"., 
u, ~ = O u----~_ ~ -  r [ r . ,  - To] 

+ 2~r/(s, t) S(T.,(u), u,) +P  .aT+21rl(s, t) 

. q'(T,,,) aT'~ 
xS(T.,(u),u,) ,'[aT]+ ) (31) 

where the operator P is given by 

O ~ u _ F  (32) P = V  2 - o t - u ,  

and the function S(Tm(u), u,) is defined by 

S(T,, ,(u),u,)=q(T.,(u))exp(I,  ~q(T" ' (z ' s ' t )  ) 
, u,(s,  t)  dz  (33) 

with 

/ [3T]  =/~-e q'(T,,,(z)) aT(z, s, t) dz (34) 
r U t 

Next we multiply Eq. (31) by OT,,,/Sx and integrate the resulting equa- 
tion over ( - ~ ,  oo), where e is defined as a point to the left of max(T.,). In 
performing this integration, we are essentially following the methods for 
deriving interface equationsJ 24"-'5~ For such a method, the "projecting field" 
T., must assume two states over the range ( - e ,  oo). A simple calculation 
shows that the trailing edge of 7"., [defined on x < m a x ( T . , ) ]  goes as 
T, , ,~exp( -Flx l /v ) ,  while we can write the leading edge [defined on 
x>max(T,,,)] as T,, ,~exp(--v Ixl/D). For our F, the field T,. can be 
approximated by a constant for a certain distance, e to the left of max(7".,). 
Conversely, since v/D ~> F, the leading edge of T., falls to To much faster 
than the trailing edge. Thus, over the range for which the reaction front is 
defined, we can treat 7",,, as a two-state function. Performing the projection 
onto T,,,, we arrive at 

Ou FA 21Y/(s, t) 
- -  = DK(s) - - -  + - -  
Ot a (r 

x ~ ~ dT., T.,(u), u,) du + l ~ dT"' ~ p _~--~u S( ~ _.--~-u ~ .aT 

[ q,l.,)q'(T')aT]}J +2~rl(s,t)S(T.,(u),u,) I[aT]+---T--.,;--T.,. , du (35) 
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where the constants a and A are defined by 

and 

S (tiT,,,): 
a =  , \  du J du (36) 

A - -~ du [ T,,,(u) - To] du (37) 

Since we are interested in the equation of motion of the reaction front 
as the system L ~ oo and as the wavenumber k ~ 0, we integrate out the 
effect of the short wavelengths by introducing the operator 

g2(f(u, s', t)) = ( f (u ,  s', t))(.,-c,/2<.r <.,+z,/2, (38) 

where Ln represents the distance over which the function f(u,  s', t) is 
averaged. This operator smooths over a distance Ls along the interface, 
thus eliminating wavenumbers larger than 2rt/L s. We now proceed to 
rewrite Eq. (35) with respect to s' and apply /2 to both sides of the 
equation. 

The first four terms in Eq. (35) are simplified by expressing u, as 

u,(s', t)=u,(s,  t)+Ov(s', t) (39) 

where u,(s, t) is the normal velocity obtained after averaging over the block 
s - L s / 2 < k + L B / 2 .  Applying g2 to u,(s' , t) and treating Ov(s',t) as a 
random variable with zero mean, we arrive at s t ))=u,(s ,  t). In a 
similar manner the curvature and the constant term in Eq. (35) are just 
rewritten in terms ofs  when operated on by/2. Using Eq. (39) and expanding 
S(T,,(u), u,), the integrand in the fourth term in Eq. (35) gives 

- - I I (s ,  t) S(T,,,(u), u,(s, t)) 1 6v(s', t) q(r.,(z)) dz (40) 
a u,(s, t) , u,(s, t) 

Now, it is reasonable to assume that the fluctuating variables r/(s', t) and 
6v(s', t) are statistically independent with 6v(s', t) having zero mean in the 
limit where Ls - -*~ .  Thus, applying 12, the fourth term in Eq.(35) 
becomes 

~-~ O(s, t) f~i dT-~ u) S(T,,(u), u,(s, t)) du (41) 

where 0 is the noise under the action of g2. Assuming, further, that OT and 
6v(s', t) are also uncorrelated with 6T having zero mean, we can similarly 
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show that the fifth term involving 6T goes to zero under the action of g2. 
Thus, after smoothing over Ln where LB ~ m, the equation of motion fo'r 
the reaction front becomes 

z Kis) r a + h  O(s, ,I aT., s(vo,(u), 
Ot a cr -~ du 

(42) 

To simplify Eq. (42), we note that the time derivative of the interface 
Oh~Or is given by 

Oh/Ot = [ 1 + (Oh/Ox) 2 ] m v (43) 

where v = -Ou/Ot is the normal velocity to the interface. Also we write the 
curvature in terms of the function h(x, t) as 

K =  - [  1 + (Oh/Ox) z] -3/2 02h/Ox2 (44) 

Furthermore, let us approximate u, in the function S(T,,(u), u,) appearing 
in Eq. (42) by u, ..~ - v  .... where Vm is the (as yet undetermined) mean inter- 
face velocity. Finally we note that we can write the noise term 0 as 
0 =fi  + c, where c is the average reactant density and ( f i ) =  0. Using the 
definitions of this last paragraph in Eq. (42) and writing h(x, t ) =  
v,,,t +((x ,  t), we obtain, after expanding to second order in derivatives of 
h(x, t); 

O~ D O ' - ~ + l  (FA+2,c)(O( '~2+2-2f i  (45) 
0--7 = ~ 2a \OxJ 

where we identify v,, = FA/a + ~1 c/o', and '~1 is given by 

21 = -21 f ~  dT,,,(u) S(T.,(u), - v . , )  du (46) 
- ~  d u  

The noise term at the interface, fi, is a Bernoulli-distributed random 
variable, which by the central limit theorem becomes normally distributed 
as LB--* ~ .  Thus, the equation of motion we have derived for the flame 
front is equivalent to the KPZ equation of interfacial roughening in the 
long-wavelength limit. 

5. S U M M A R Y  AND DISCUSSION 

In this work we have developed a realistic phase-field model for the 
dynamics of slow combustion in a randomly distributed medium. Our 
model is derived from the first principles of chemical kinetics, assuming a 

822/81/3-4-16 
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reactant burns via a steady-state reaction with air. In addition to chemical 
activation, our model also includes thermal diffusion and thermal dissipa- 
tion. An important property of our model is the existence of a continuously 
extended thermal field, through the diffusive coupling of the thermal field 
to the concentration field of the reactant. We define the parameters of our 
model based on the properties of wood, and motivate our combustion 
problem in the context of forest fires. 

We find a percolation transition at a critical density c * ~  0.19, below 
which the flame front will spontaneously die. We have analyzed the nature 
of this transition showing that the velocity of the average front position 
scales as ( c - c * )  e, where ~b ~ 1/2. We also found a correlation exponent 
v ~ 1/2. Both these values are consistent with the mean-field theory of per- 
colation as well as the mean-field limit of combustion we derived from the 
full equations. Through analyzing our mean-field model, the existence of a 
critical concentration is also found analytically. 

Above c* we found that the interface associated with the combustion 
front displays kinetic roughening. By an appropriate application of the 
scaling theories developed for percolation theory and kinetic roughening of 
interfaces, we have derived a scaling ansatz for the interfacial width that 
couples time, concentration, and system size. This form has been verified 
numerically in appropriate limits, and used to estimate the scaling 
exponents fl and X independently. Together with the equal-time height- 
height correlation function, the results give strong evidence to the fact that 
the kinetic roughening of the flame front is in the universality class of the 
KPZ equation. We have also obtained this result analytically, by deriving 
an approximate interface equation which, near c = 1, is equivalent to the 
KPZ equation. 

While our model was derived to describe combustion fronts, it also 
lends itself to the description of a wider class of activated reaction-diffusion 
problems. Provided the reaction term contains an Arrhenius factor, the 
prefactor T ~ multiplying the activated form plays a less important role in 
determining the properties of the equation. Thus, we belive that a wide 
class of different physical systems, described by equations analogous to 
Eq. (1), show behavior of the type described here. Of course, one of 
the main ingredients in the present work has been the introduction of a 
random background density field of reactants, which leads to the kinetic 
roughening of the front. 
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