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Defect stability in phase-field crystal models: Stacking faults and partial dislocations
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The primary factors controlling defect stability in phase-field crystal (PFC) models are examined, with
illustrative examples involving several existing variations of the model. Guidelines are presented for constructing
models with stable defect structures that maintain high numerical efficiency. The general framework combines
both long-range elastic fields and basic features of atomic-level core structures, with defect dynamics operable
over diffusive time scales. Fundamental elements of the resulting defect physics are characterized for the case of
fcc crystals. Stacking faults and split Shockley partial dislocations are stabilized for the first time within the PFC
formalism, and various properties of associated defect structures are characterized. These include the dissociation
width of perfect edge and screw dislocations, the effect of applied stresses on dissociation, Peierls strains for
glide, and dynamic contraction of gliding pairs of partials. Our results in general are shown to compare favorably
with continuum elastic theories and experimental findings.
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I. INTRODUCTION

Structural kinetics in crystalline solids are driven hetero-
geneously at the atomic level by localized defects, which in
turn drive mesoscopic and macroscopic phenomena such as
structural phase transformations, fracture, and other forms
of plastic flow. A complete description of such processes
therefore requires a multiscale approach. Existing modeling
methods typically operate either exclusively on atomic scales
or on meso- and macroscopic scales. Phase-field crystal
(PFC) models on the other hand provide a framework that
combines atomic length scales and mesoscopic/diffusive time
scales,1–3 with the potential to reach mesoscopic lengths
through systematic multiscale expansion methods.4–8

The PFC approach naturally incorporates elasticity, plas-
ticity, and effects of local crystal orientation into a relatively
simple atomic-level continuum theory.1,2 The literature pub-
lished to date demonstrates that such a formulation, with only
a few minimal ingredients, gives rise to a broad range of
physics associated with diffusive nonequilibrium processes
in liquid and solid systems. One of its strengths in terms of
describing periodic systems is the wealth of inherent defect
structures that automatically emerge from the basic free energy
functional. This permits the study of crystalline defects within
a description that captures both long-range elastic fields and
basic features of atomic-level core structures. In addition to
fundamental, local defect properties, the role of these defects in
dynamic materials phenomena that operate over long, diffusive
time scales can be examined. Therefore, defect stability, the
core structure of stable defect configurations, and the dynamics
and interactions of various defect structures within the PFC
description all become central issues as the method is advanced
further into solid-state phenomena. However, in light of the
approximations inherent to the approach, its limitations need
to be adequately realized and understood as well.

The basic properties of perfect PFC crystals are relatively
well understood, but the various classes and types of defects

relevant to each given lattice symmetry require further study
if material-specific applications are to be pursued. Perfect
dislocations and simple grain boundaries in 2D triangular and
3D bcc crystals have been examined and are known to be
topologically stable under typical conditions of small local
strain and low thermodynamic driving force.2,3,9–19 Certain
other defect structures, notably stacking faults in close-packed
3D crystals, have inherently lower topological stability, and
in such cases the proper balance between crystal stability
and defect stability in the model formulation becomes more
restrictive and difficult to achieve. It is also not necessarily
clear which of the now many versions of PFC are best suited
for describing defect-mediated processes.

The aims of the first part of this article are to characterize
the nature of defect stability in PFC models in terms of a
few general model features, and to examine how various
versions compare in this respect. We will show that fine control
of crystal structure often leads to reduced defect stability.
A balance must therefore be found that sufficiently favors
crystalline order yet does not destabilize relatively unprotected
defect structures such as planar faults. A few ways to achieve
this balance are identified and compared critically. The most
efficient of these approaches is then, in the second part of
this article, applied to the case of fcc crystals, in which
the stability of stacking faults plays a central role. A range
of defect properties and behaviors consistent with theory
and/or experiment are shown to naturally emerge from what
is still a very simple set of equations. Potential implications
for atomistic studies of plastic deformation involving slow,
diffusive processes are discussed, and initial results concerning
a few processes of interest are described. More detailed
findings relative to these will be outlined further in a future
publication.

PFC models can be viewed as simplified versions
of classical density functional theory (CDFT).3,20,21 The
Ramakrishnan-Yussouff (RY) CDFT22 provides a useful
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reference point, with a free energy functional given by an
expansion around the liquid state correlation functions,

F

kBT
=

∫
d�r[ρ(�r) ln(ρ(�r)/ρ�) − δρ(�r)]

− 1

2

∫∫
d�rd�r2δρ(�r)C2(�r,�r2)δρ(�r2) + · · · , (1)

where ρ(�r) is the atomic number density field, ρ� is a constant
reference density, δρ(�r) = ρ(�r) − ρ�, and C2(�r,�r2) = C2(|�r −
�r2|) is the two-point direct correlation function of the fluid,
assumed isotropic.

A general PFC-type functional can be derived from Eq. (1),
truncated beyond C2(|�r − �r2|), as described in Ref. 3. In terms
of the rescaled atomic density field n(�r) = ρ(�r)/ρ� − 1, an
expansion of the logarithm in Eq. (1) generates a functional
F̃ = F/(kBTρ�) that can be written

F̃ =
∫

d�r
[

1

2
n2(�r) − w

6
n3(�r) + u

12
n4(�r)

]

− 1

2

∫∫
d�rd�r2n(�r)C2(|�r − �r2|)n(�r2). (2)

The expansion coefficients w and u are treated as free
parameters to provide additional model flexibility, and n(�r)
is also typically allowed to assume nonzero average values n0.
Such an expansion is justified for kernels C2 that produce
low-amplitude density profiles, which in general requires
suppression of large wave number two-body correlations. The
coefficient w will be set to zero throughout this article, as
the un4(�r)/12 term automatically gives rise to the effective
terms un0n

3(�r)/3 and un2
0n

2(�r)/2.23 It will also be implied
that u = 3 throughout this study.

Three dynamic equations for n(�r) will be considered here.
The first is a purely diffusive model B form,

∂n(�r)

∂t
= ∇2 δF̃

δn(�r)
, (3)

where t is dimensionless time. The second equation of motion
introduces a faster inertial, quasiphonon dynamic component
in addition to diffusive dynamics,10

∂2n(�r)

∂t2
+ β

∂n(�r)

∂t
= α2∇2 δF̃

δn(�r)
, (4)

where α and β are constants related to sound speed and
damping rate, respectively. The final equation of motion,
applicable to Eq. (1), is

∂ ln [n(�r) + 1]

∂t
= − δF̃

δn(�r)
. (5)

With imposed density conservation this equation provides an
accelerated path to local energy minima.24 All simulations
in this study were performed in 3D using pseudospectral
algorithms and periodic boundary conditions. Those that
employed Eqs. (3) or (4) used semi-implicit time stepping,
while those that employed Eq. (5) used explicit time stepping.

II. ORDER AND DEFECTS IN PFC MODELS

In this section, the primary factors controlling defect
stability in PFC and CDFT models are first outlined through

an analysis of stacking faults applicable to both model types.
Three potential solutions to the problem of defect instability
are examined and shown to be sufficient for stabilization
of stacking faults in fcc crystals. These approaches center
on multipeaked correlation functions, few-peaked correla-
tion functions with broad effective envelopes, and entropy-
driven formulations, respectively. Section III expands on
these concepts with a more detailed examination of specific
issues concerning defect structure geometry, interactions, and
dynamics.

A. Large wave number or multipeaked models

The efficiency and tractability of PFC models relative
to CDFT are direct consequences of the central PFC ap-
proximation: truncation of two-body correlations beyond the
first few primary correlation peaks in Fourier space [which
permits the truncated expansion of the logarithm in Eq. (1)].
All structural information is consolidated into the wave
number range around the first few primary peaks in the
structure factor. This still permits control of basic structural
symmetries, but produces local density peaks with broad,
sine-wave-like profiles rather than the sharply peaked Gaussian
profiles that emerge from CDFT functionals with large wave
number correlations. Though this small wave number approx-
imation reduces model complexity and increases efficiency
by orders of magnitude, it can in some cases also reduce
defect stability, as will be shown in the present subsection.
Methods by which defects can be stabilized while still
retaining the small wave number approximation are discussed
in Sec. II B.

1. Many-peaked XPFC model

The effect of large wave number correlations on defect
stability can be demonstrated through an examination of the
PFC model formulation of Greenwood et al.25–27 (XPFC).
This approach allows one to stabilize many different crystal
symmetries by constructing a correlation kernel with peaks,
typically Gaussians, located at the first few primary reflections
of a given lattice structure. The Fourier transformed XPFC
kernel can be written

Ĉ2(k)i = −r + He−(k−ki )2/(2α2
i )e−σ 2k2

i /(2ρiβi ), (6)

where i denotes a family of lattice planes at wave number
ki , and σ is a temperature parameter. The constants αi ,
ρi , and βi are the Gaussian width (which sets the elastic
constants), atomic density, and number of planes, respectively,
associated with the ith family of lattice planes. We have
introduced the additional constants r and H to permit Ĉ2(k)
to assume negative values between peak maxima, which
improves numerical stability when used with Eq. (1). The
envelope of all selected Gaussians i shifted by the constant −r

then composes the final Ĉ2(k). For example, two such peaks
with ratio k2/k1 = √

4/3 produce an fcc structure in which the
first peak corresponds to {111} and the second to {200}, the
two primary fcc reflections.

The issue of defect stability and its reliance on the
correlation kernel can be illustrated with an analysis of the
fcc intrinsic stacking fault energy (γISF or SFE) and stability
as a function of the number of fcc reflections considered
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FIG. 1. (Color online) (a) An intrinsic NL = 35 fcc stacking fault
in a periodic simulation cell. (b) Close-up and full xz views of the
fault. (c) Full xz view of a sheared/unfaulted crystal in the same cell.
Yellow lines are guides to the eye. These images were generated using
Eqs. (2) and (9) with parameter values n0 = −0.48, r = −0.63, and
Bx = 1.

in Ĉ2(k). The full CDFT of Eq. (1) with Ĉ2(k) given by
Eq. (6) was employed, as discussed below. Faulted crystals
were evaluated within a periodic simulation cell with (�x,�y,�z)
axes in ([1̄12],[110],[11̄1]) directions, and a single intrinsic
stacking fault was created by removing one close-packed layer
and shifting the layers above down by a/

√
3, where a =

2
√

3π/k1 = 1.8537 is the equilibrium fcc lattice constant.
The final number of close-packed layers NL must satisfy
NL = 3n − 1, where n > 1 is an integer (NL = 35 was used
in most cases here). Initial states were relaxed using Eq. (5). In
this geometry, the stacking fault may be stable, metastable,
or unstable, with instability unfolding through a shearing
operation τzx or τzy that removes the stacking fault and creates
a uniformly sheared perfect crystal with total shear strain
ε = (

√
2NL)−1, as shown in Fig. 1.

Some results are displayed in Fig. 2 along with specific
parameter values employed. Stacking faults were found to
be highly unstable in the two-peaked model for virtually all
meaningful values of αi (� 2). With five peaks, metastable
faults were observed, while ten peaks produced fully stable
faults for which the energy of the faulted crystal was very
slightly lower than that of the sheared state (δF̃ = F̃SF −
F̃Shear � 0). A 15-peak model was also found to be fully stable
against shear, with a larger negative δF̃ . The relevant structure
factors for the 15-peak model are shown in Fig. 2. These results
indicate that the stability of stacking faults to shear increases
as larger-k correlations are considered. The reason for this
behavior is discussed later in this section.

Significantly, the computational efficiency of these models
decreases rapidly with increasing kmax. The amplitude of the
density peaks must be allowed to grow roughly as ke

max if the
larger-k modes are to contribute significantly to the free energy
of the system. This necessitates use of the full logarithmic
one-body term in the free energy, without expansion, since
the truncated expansion of Eq. (2) limits stable amplitudes to
relatively small values, O(1). The logarithm greatly reduces
the maximum allowable time step, while the higher-k modes

-2

-1

 0

 1

C
2(

k)

XPFC
PY

-2
-1
 0
 1

 5  10  15  20  25  30

S
F

E
, 

F

kmax

SFE
F

102

103

104

105

106

S
(k

)

Faulted fcc
Sheared fcc

0

1

2

3

 5  10  15  20  25  30

S
(k

) 
x1

05

k

Faulted fcc
Sheared fcc

ˆ
˜

˜

FIG. 2. (Color online) Effect of large-k modes on stacking fault
stability. From top to bottom: Cross-sectional normalized n(�r) maps
of the XPFC fcc crystal with 2, 5, 10, and 15 fcc reflections from
left to right; Ĉ2(k) of the PY hard-sphere model at ρ� = 0.9445 and
of the XPFC model with 2, 5, 10, and 15 fcc peaks; log plot of the
structure factor S(k) = 〈|n̂(k)|2〉 for faulted and sheared fcc crystals
in the 15 peak XPFC model; linear S(k) plot for faulted and sheared
fcc crystals in the PY hard-sphere model; XPFC γISF and NL = 35
driving force for instability, δF̃ = F̃SF − F̃Shear vs kmax. Symbols in
the S(k) plots are Bragg reflection maxima of perfect fcc crystals in
either model. XPFC parameter values: ρ� = 1.0488, αi = 1, σ = 0,
H = 3, and r = 2. H and r were varied from their default values,
H = 1 and r = 0, to ensure numerical stability of the logarithmic
term in Eq. (1).

reduce the density peak width (as shown in Fig. 2, top) and
therefore the maximum allowable grid spacing 
x.

2. Many-peaked CDFT model

A similar analysis was attempted using the full RY CDFT
of Eq. (1), with Ĉ2(k) given by the Percus-Yevick (PY)
expression for hard spheres28,29 and dynamics given by Eq. (5).
Our findings indicate that hcp crystals in this model actually
tend to have a slightly lower free energy than fcc crystals,
a fact that apparently has not been appreciated before. This
leads to a negative γISF and therefore stacking faults that are
inherently stable to the sheared state. Nonetheless, a perfect
edge dislocation in a metastable fcc crystal was found to
split into two well-separated Shockley partial dislocations
connected by a stacking fault, as expected for low γISF

materials (Fig. 3). The reaction is

�b = a

2
[110] → a

6
[121] + γISF + a

6
[211̄]. (7)
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FIG. 3. (Color online) Split fcc edge dislocation in the ρ� =
0.9445 PY hard-sphere CDFT of Eq. (1). A cutaway view of the
density field ρ(�r) is shown, with the color scale truncated above
ρ(�r) = 1, though ρ(�r) � 7800 at the peak maxima. Left: Diagram-
matic representation of the dissociation of a perfect dislocation �b into
Shockley partials �b1 and �b2.

Though both γISF and δF̃ in this system are always negative
or very small and positive, making instability to shear virtually
impossible, we did find that δF̃ increases as kmax is reduced.
This was determined by modifying the PY function as Ĉ2(k) =
ĈPY

2 (k)e−(k−kmax)/2 for k � kmax, while holding 
x constant.
The observed trend in δF̃ indicates that the underlying link
between stability and kmax found in the XPFC model is also
present here.

3. Analysis and generalization

This link can be understood by examining the spec-
tra of the two relevant states, the faulted crystal and the
sheared/unfaulted crystal (see Fig. 2). An infinite stacking
fault can be expressed mathematically as a 1D step function
in the 3D displacement field u(�r) of the crystal, with the
step direction normal to the fault. The structure factor of a
faulted crystal therefore contains the same 1/k2 line shapes
characteristic of scattering from a surface. In this case each
lattice reflection k(i), except the set of {111} planes parallel
to the stacking fault, will possess its own set of 1/(kz − k(i)

z )2

modes, and these modes will only extend in the reciprocal
space direction perpendicular to the plane of the fault, kz.
The spherically averaged structure factor S(k) thus exhibits
a sequence of broadened fcc reflections, each with effective
1/(k − k(i))2 line shapes of roughly the same width.30

The structure factor of a sheared perfect crystal also exhibits
a form of peak broadening, but in this case the degree of
broadening is proportional to k. Depending on the orientation
of shear strain ε, or deformation in general, the spacing d

between certain lattice planes within any given family changes
to some value d ′. A simple analysis shows that the resulting
shift in k space under shear is

δk = 2π

(
1

d ′ − 1

d

)
= 1 − cos ω

cos ω
k, (8)

where ω = arctan ε. Thus the primary low-k reflections remain
sharp and/or slightly split, while the degree of shift or effective
broadening increases in proportion to k due to this growing
decoherence effect across high-index, low-d planes.

The driving force for stacking fault instability is primarily
a function of δF̃ = F̃SF − F̃Shear. When a low-mode kernel
is used, F̃Shear will tend to be smaller than F̃SF because the
slightly shifted low-k modes of a sheared crystal induce a
small energy cost relative to that of the long-range line-shape
tails of a faulted crystal, provided that the shear strain is not
too large. As kmax increases, this situation eventually reverses.
The high-order reflections from the sheared lattice become
broader or less coherent than those of the faulted crystal
such that if enough high-k modes are considered, stacking
fault stability can eventually be attained when F̃Shear > F̃SF.
This effect can be seen in the data of Fig. 2. We emphasize
that the high-k modes do not necessarily decrease γISF or
F̃SF, but that the increase in F̃Shear alone leads to a dramatic
increase in stacking fault stability. In the geometry of our
simulations, the critical wave number at which F̃SF = F̃Shear

increases with NL since ε = (
√

2NL)−1, but for fixed NL

stability increases with kmax. The exact wave number at which
stability is attained (kmax � 18 in this case) also depends
on model parameters, but the basic trends should generally
hold.

Similar arguments can be constructed for other types
of defects by reconsidering for each case the two generic
parameters controlling stability; driving force and energy
barrier. The driving force for instability is controlled by both
the energy of the defected state and the energies of the states
resulting from defect removal. In the case just examined, this
force was quantified by δF̃ , the energy difference between the
faulted state and the competing sheared state. The magnitude
of this force is therefore deeply tied to the precise form of
Ĉ2(k) and the energy cost that it imposes on defect line shapes,
a few examples of which are shown in Fig. 4. These spectra
were obtained using the modulated version of the original
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FIG. 4. (Color online) Structure factors of fcc crystals with
various types of defects. Note that the most compact structure, the
planar stacking fault, produces the overall broadest line shapes. These
spectra were generated using Eqs. (2) and (12) with parameter values
n0 = −0.48, r = −0.63, Bx = 1, α0 = 1/2, and k0 = 6.2653.
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PFC model presented in Sec. III A, though the basic features
do not depend on the model used. The four crystals shown
have roughly equivalent defect densities and their structure
factors exhibit similar line shapes, with the stacking fault
producing the greatest degree of broadening. It is apparent
that in general, broad correlation kernels will reduce the
energies of all of these defect structures and therefore the
driving force for their instability, as demonstrated explicitly
in the next subsection. Alternatively, stacking faults were
stabilized in the previous example by instead increasing
the energy of the post-defect-removal sheared state through
high-k correlation effects. This simply illustrates that the
driving force can be controlled by varying the energy of
the initial state, the final state, or both through the form
of Ĉ2(k).

The second parameter relevant to stability, the energy bar-
rier for defect removal or topological protection, is controlled
by the nature of the process by which a given defect can be
removed. The shearing operation that removes a stacking fault
requires only small local translations of the density peaks.
No peaks are created or removed, thus no long-range mass
transport is involved, and the resulting energy barrier is small.
Stability in such a case therefore requires that the driving
force be minimized, since the energy barrier is in general
more difficult to manipulate. Removal of dislocations and
grain boundaries on the other hand requires more elaborate
transformations that often involve climb, with redistribution
of atoms by long-range diffusive mass transport (adding or
removing density peaks in the case of a PFC model). These
defects thus have greater inherent stability than stacking faults
due to both their somewhat narrower line shapes and their
generally larger energy barriers for removal.31

The results presented in this section demonstrate that certain
defect structures can be stabilized in PFC models by building
structural information back into the model with additional
correlation peaks. The resulting multipeaked models require
the full logarithmic free energy functional and therefore
suffer from marked inefficiencies and greater complexity
relative to existing PFC models studied in the literature.
However, the sources of defect instability uncovered here
will prove useful in analyzing and constructing few-peaked
PFC models that both retain efficiency and stabilize relevant
defects.

B. Small wave number or low-mode models

The inefficiencies associated with large wave number
models can be avoided by maintaining the small wave number
PFC approximation and giving closer treatment to the details
of the one or few correlation peaks employed. We have
successfully stabilized stacking faults using four variations
of PFC with the small wave number approximation, though in
general this requires some degree of parameter tuning and/or
slight modification of Ĉ2(k).

Perhaps the simplest way to improve defect stability in this
approximation is to use a broad Ĉ2(k) in the region of the
first few primary lattice reflections. This in general lowers the
energy associated with defect line shapes while having little
to no effect on the energy of, for example, uniformly sheared
states or undeformed crystals. A sufficiently broad envelope

can thus stabilize the 1/k2 stacking fault modes relative to
the first few sheared state δk shifts. The main drawback is
that the stability of the equilibrium crystal structure tends to
decrease as Ĉ2(k) is broadened. For example, a two-peaked
XPFC fcc model can prefer hcp, bcc, rod, or lamellar structures
over fcc for sufficiently large αi . Thus defect stability is not
given freely; it comes inversely bound to crystal stability.
This trade-off must be managed by ensuring that the primary
reflections of the desired crystal structure continue to be
preferred over those of competing symmetries that may exist
within a broad Ĉ2(k) envelope. Specific parameter values
related to the width of Ĉ2(k) (elastic moduli) therefore become
restricted, but a workable balance between defect stability
and crystal stability is still often attainable in the small wave
number PFC approximation, as demonstrated in the following
subsections.

1. Original PFC model

We begin with the original PFC model of Elder et al.,1,2

for which the correlation kernel and the primary fcc and hcp
reflections are shown in Fig. 5. This PFC or Brazovskii32

functional specifies a kernel

Ĉ2(k) = −r + 1 − Bx(1 − k̃2)2, (9)

where Bx is a constant proportional to the solid-phase elastic
moduli and k̃ = k/(2π ). This Ĉ2(k) produces equilibrium fcc
structures within a certain parameter range,33,34 but the energy
of the hcp crystal is necessarily always very close to that of
fcc, and is sometimes lower. This means that the fcc γISF

is always vanishingly small in the original PFC model, which
naturally stabilizes stacking faults relative to shear. Perfect dis-
locations, as with the CDFT hard-sphere model, split into two
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FIG. 5. (Color online) Sample PFC kernels that produce stable
stacking faults, with relevant fcc and hcp reflections also indicated.
Inset: Close-up view of the peak maxima. Original PFC parameters:
n0 = −0.48, r = −0.63, and Bx = 1. XPFC∗ parameters, Eq. (10):
n0 = −3/10, r = −9/40, w2 = 1/50, w4 = 49/50, αi � 1, σ = 0,
and H � 1.0625. Wu et al. parameters: n0 = −3/10, r = −9/40,
R1 = 1/20, and Bx = 1. Note that for display purposes all kernels
have been shifted by −3n2

0 to maintain consistency with Eq. (1), and
that k has been rescaled in the XPFC∗ and Wu et al. kernels to match
the equilibrium fcc reflections of the original PFC kernel.
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FIG. 6. (Color online) Dissociated �b = a/2[110] edge and screw
dislocations in the (modulated) original PFC model of Eqs. (2) and
(12). The lower images show cutaway views of n(�r), illustrating the
mixed Shockley partials connected by a single intrinsic stacking fault.
The upper images show atomic representations of the peak positions
in n(�r): Red atoms have local hcp coordination (stacking fault),
gray atoms have local noncrystalline coordination (defect cores),
and atoms with fcc coordination are not shown. Parameter values
n0 = −0.48, r = −0.63, Bx = 1, α0 = 1/2, and k0 = 6.2653 were
used.

well-separated Shockley partials and a stacking fault, as shown
in Fig. 6. Note that, for display purposes, the defects shown
in Fig. 6 were generated using a modified version of Eq. (9),
discussed in Sec. III A. The small value of γISF produced by
Eq. (9) leads to an equilibrium splitting distance ∼32a for �b =
a/2[110] edge dislocations, which is significantly larger than
values �10a observed in typical single-component fcc metals.

The broad Ĉ2(k) function of the original PFC model
therefore naturally stabilizes defects, but is relatively limited in
terms of flexibility in controlling crystal symmetry and elastic
properties. One is restricted to the deep quench region of fcc
stability, where small changes to the elasticity parameter Bx

tend to destabilize fcc, and the inherent γISF is extremely small.
It is possible to tune γISF within a small range by varying
the envelope width Bx , but a more effective approach is to
explicitly enhance or suppress specific hcp and fcc modes, as
demonstrated in Sec. III.

2. Low-mode XPFC model

XPFC models with only a few low-k peaks can also be
tuned to support less protected defect structures, though some
modifications seem to be necessary in the case of fcc stacking
faults. As αi is increased above ∼1 or 2, Gaussian kernel peaks
generally become too broad to maintain a consistent crystal
structure before they are broad enough near their maxima to
sufficiently support the 1/k2 stacking fault modes. We have
obtained better results in this regard using a modified Gaussian

shape function,

Ĉ2(k)i = −r + H exp

[
−w2(k − ki)2 + w4(k − ki)4

2α2
i

]

× exp

[
− σ 2k2

i

2ρiβi

]
, (10)

where the coefficients w2 + w4 = 1 set the relative weight of
k2 versus k4 shape functions. This formulation still permits
control of the phase diagram in the original spirit of the model
as well as the magnitude and anisotropy of elastic constants,
though the range of parameter values sufficient for stability
remains restricted. Values in the vicinity of w2 = 1/50, w4 =
49/50, αi = 1, σ = 0, H = 1, r = −9/40, and n0 = −3/10
have been found sufficient to stabilize stacking faults in a three-
peaked fcc model with two fcc reflections at k2 = √

4/3k1

and one commensurate hcp reflection at k3 = √
41/36k1 (see

Fig. 5). Similar results have been obtained using only the two
fcc reflections with their maxima connected by any nearly
linear bridge function.

These findings highlight the conflict between crystal sta-
bility and defect stability in small wave number models. Very
narrow crystal-stabilizing XPFC kernels destabilize defects of
all but the most protected types, somewhat broader kernels still
tend to destabilize susceptible planar fault structures, while
very broad fully defect-stabilizing XPFC kernels ultimately
resemble the simpler kernels of the original PFC model.
These inherent trade-offs suggest a limitation to the range
of atomic-level crystal and defect structures that low-mode,
two-body PFC models can capture, though the ultimate limit
apparently lies at some level of complexity beyond that of the
primary defect structures in fcc crystals.

3. Wu et al. fcc PFC model

The two-mode fcc model introduced by Wu et al.35

also produces stable stacking faults within certain parameter
ranges. To facilitate tuning of γISF and stability, we find it
helpful to retain a bulk modulus coefficient Bx analogous to
that of the original PFC kernel,

Ĉ2(k) = −r + 1 − Bx(1 − k̃2)2

[(
Q2

1 − k̃2
)2 + R1

Bx

]
,

(11)

where Q1 = √
4/3 is the wave number of the second mode

and R1 sets its height. We find that quenches of intermediate
depth tend to produce fcc crystals with moderate γISF, and
that γISF decreases with increasing |n0|. This is because the
energy of hcp approaches and may become lower than that
of fcc as the quench becomes deeper. As an example, the
parameter set r = −9/40, R1 = 1/20, Bx = 1, and n0 =
−1/4 produces metastable stacking faults for NL = 35 and
perfect dislocations that do not split into partials. As n0 is
lowered, NL = 35 stacking faults eventually become fully
stable, with n0 = −3/10 producing a very low γISF and widely
split partial dislocations (see Fig. 5). γISF also varies rapidly
with Bx , again permitting only a small degree of elastic moduli
tuning.

The source of defect stability in this PFC model is apparent
from examination of the kernel around the primary fcc modes.
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Elasticity parameters Bx � 1 produce broad profiles with
very shallow wells between the two modes, while Bx � 1
produces narrowing profiles with increasingly deeper wells.
Using the parameter values above at n0 = −3/10 and Bx = 2,
the stacking fault line shapes are already unfavorable enough
to fully destabilize NL = 35 faulted crystals. This two-mode
model comes with similar restrictions in terms of acceptable
parameter ranges to those of the original and XPFC models, but
does provide greater control of fcc stability than the original
PFC model, allowing use of shallower quenches closer to the
linear elastic regime.

4. Vacancy PFC model

The vacancy PFC or VPFC model typically employs the
same Ĉ2(k) as the original PFC model, but adds a strong
local nonlinear cutoff term that destroys the inherent one-
mode nature of inhomogeneous density states and produces
relatively autonomous individual density peaks separated by
regions of zero density.36,37 This can lead to stabilization
of individual lattice vacancies and in general produces a
Brownian hard-sphere-like system in which fcc and hcp
structures have lowest free energy, with a slight preference
toward fcc. When vacancies are stabilized in this way, packing
effects become more important and the natural similarities
between fcc and hcp in this regard should lead to low-γISF

systems. We find that a low γISF, comparable to that of
the original PFC kernel, is indeed obtained with the VPFC
description, though in this case we attribute the low value
primarily to entropic or packing effects. In this sense, the
VPFC model is likely the most defect friendly of existing PFC
models, but one must reinterpret the time scales accessible to
this description since the explicit vacancy diffusion mechanism
has been partially reintroduced. Nonetheless, stacking faults
are quite stable in this formulation and perfect dislocations
split properly into partials joined by a stacking fault.

III. SURVEY OF FCC DEFECT PROPERTIES IN A SMALL
WAVE NUMBER PFC MODEL

The findings presented in Sec. II suggest that many types
of crystalline defects observed in real materials, even those
with relatively low inherent stability, can be stabilized within
existing PFC models. The general requirement for stability
under the small wave number approximation involves a
sufficiently broad correlation kernel maximum, which leads to
restrictions on the parameter ranges that provide both defect
and crystal stability. Nonetheless, these restrictions appear
to be manageable in the case of close-packed crystals, and
closer examinations of fcc systems reveal that a wide variety
of realistic defect properties naturally emerge within these
parameter ranges. Some of these properties are discussed in
the present section.

Emphasis is placed on fcc crystals and tuning of the
stacking fault energy to generate either undissociated per-
fect dislocations (high γISF) or dissociated Shockley partial
dislocations bound by stacking faults (low γISF). Various
fundamental properties of both edge and screw dislocations
in these configurations are examined.
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0.

A. Modulation of the original PFC model

As discussed in Sec. II B1, the dissociation width of a
perfect dislocation in the original PFC model is larger than
that of most single component fcc metals, due to the small
value of γISF relative to the fcc elastic moduli. This behavior
can be tuned by various means. Since γISF is strongly linked to
the difference in free energy between commensurate fcc and
hcp states, one method to control γISF is to selectively promote
or suppress the primary hcp reflections that do not coincide
with those of the fcc crystal. For example, the commensurate
hcp reflection at k0 = 2π

√
41/12/a can be suppressed by

subtracting a small XPFC-type Gaussian centered at this wave
number from the Ĉ2(k) of Eq. (9), such that the two fcc
reflections are not affected,

Ĉ2(k) = −r + 1 − Bx(1 − k̃2)2 − H0e
−(k−k0)2/(2α2

0 ). (12)

The constants H0 and α0 are analogous to those of Eq. (6).
The original PFC kernel modified in this way is shown

in Fig. 7. The result is greater stabilization of fcc due to
the increase in F̃hcp, and a corresponding increase in γISF

as the height of the subtracted Gaussian H0 becomes larger.
This Ĉ2(k) is similar to that of Wu et al. with variable Bx ,
though some subtle differences are apparent. Only γISF of
the equilibrium fcc state changes as H0 is varied, producing
an essentially fixed reference system with tunable γISF. The
standard phase diagram is of course modified for nonzero
H0, proportionally expanding the region of fcc stability.
The dependence of γISF on H0 is also shown in Fig. 7.
NL = 35 faults are stable or metastable for H0 � 0.05, and
very little system size dependence is observed in γISF for
NL � 35.

B. Dissociation width vs γISF

This method of controlling γISF can be used to examine
defect properties that depend on stacking fault energy, and
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to compare functional dependencies with those predicted by
continuum elastic theories. For example, the elastic strain
energy of a fcc crystal containing a perfect dislocation with
b = a/

√
2 is lowered by dissociation into two Shockley

partials with bp = a/
√

6 and a stacking fault, as described by
Eq. (7). This is confirmed by the Frank criterion, b2 = a2/2 >

2b2
p = a2/3. Continuum elastic theories provide predictions

for the equilibrium separation deq between the two resultant
Shockley partials. The long-range elastic energies of the
partials produce a repulsive force per length of dislocation
line proportional to 1/d, while the energy cost of the
fault increases with d, producing an attractive force per
length proportional to γISF. The separation that balances
these two forces for an elastically isotropic material is
given by38

deq = 2 − ν

1 − ν

(
1 − 2ν cos 2β

2 − ν

)
μb2

p

8πγISF
, (13)

where ν is the Poisson ratio, β is the angle between the Burgers
vector of the perfect dislocation and its line direction, and μ is
the isotropic shear modulus of the crystal. Similar though more
complicated results can be derived using anisotropic elasticity
or various approximations thereof.38

We have measured deq for both edge and screw dislocations
in the modulated PFC model, as a function of γISF. Base
parameter values n0 = −0.48, r = −0.63, and Bx = 1 were
used, giving an fcc lattice constant a = 1.8537. The crystal
orientation of Sec. II was employed (see Fig. 6), though in
this case with periodicity broken in the z direction by a thin
layer of liquid. A single perfect �b = a/2[110] edge dislocation
with line direction [1̄12] was initialized at (Ly/2,Lz/2)
using system dimensions (Lx,Ly,Lz) = (16,3986,1820) and

x = a

√
3/512 (203 668 atoms). Perfect �b = a/2[110]

screw dislocation dipoles with 〈110〉 line directions were
initialized similarly at (Lx/4,Lz/2) and (3Lx/4,Lz/2) with
(Lx,Ly,Lz) = (4278,10,1820) and 
x = a/

√
200 (107 692

atoms). The symmetry of the screw dislocation displacement
field in the x direction necessitates a dipole configuration. In
both cases the diffusive dynamics of Eq. (3) were used. Results
are shown in Fig. 8, including comparisons with Eq. (13) and
the available anisotropic theories.

The expected linear trend is clearly observed for both
dislocation types, and the agreement with linear elastic
predictions is excellent. The fully isotropic theory very
slightly overestimates deq, while the isotropic theories with
approximate anisotropic moduli of Voigt and Reuss38 and
the fully anisotropic theory (which is tractable only for the
screw dislocation) match the data extremely well.39 We note
that it was necessary to simulate relatively large systems to
eliminate significant boundary and image effects. The periodic
image forces nonetheless induce a small bias toward larger
d that grows with d and appears to become appreciable for
d � 25a at this system size. Otherwise, the largest proportional
disagreement is seen at small values of d where the linear
elastic predictions are likely somewhat inaccurate due to
core overlap effects. We believe that these results provide
an important validation of fundamental defect energetics and
interactions within the PFC description.
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C. Dissociation width vs applied (Escaig) strain

When the glide-inducing shear strain εzy is applied to either
of the dissociated dislocation lines shown in Fig. 6, the two
partials will glide together with a nearly constant separation
(except at large velocities as discussed below). This is because
the components of their respective Burgers vectors in the shear
direction [110] have the same sense. This is not the case for
shear strain εzx . The two partials have components in this
shear direction [1̄12] with opposite sense, which produces
glide forces in opposite directions that extend the faulted region
in between. This particular strain orientation is sometimes
referred to as the Escaig strain. The new equilibrium separation
for fixed stress τzx can again be calculated within isotropic
elasticity theory, and for a general dislocation one obtains40

d = μb2
pf (θ1,θ2)

π (2γISF − τzxbp| sin θ2 − sin θ1|) , (14)

where f (θ1,θ2) = cos θ1 cos θ2 + sin θ1 sin θ2/(1 − ν), and θ1,
θ2 are the angles between the overall dislocation line direction
and the Burgers vector directions of the leading and trailing
partials, respectively. For the case of a screw dislocation, where
θ1 = −30◦ and θ2 = 30◦, Eq. (14) reduces to

d = 2 − 3ν

8π (1 − ν)

μb2
p

γISF − τzxbp/2
. (15)

Shear strain εzx was applied to the screw dipole configurations
described in the previous subsection by adding a penalty
function to the first few crystalline surface layers near the
liquid boundaries and translating the penalty field at some
constant rate ε̇zx to drive the external deformation. An affine
shear deformation was also applied to the entire crystal at
each time step, and the inertial equation of motion, Eq. (4),
with α = 1 and β = 1/100 was used. These features together
should ensure that the resolved shear strain at the dislocation
remains as close to the applied shear strain as possible. Selected
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fixed values of εzx were held periodically to allow the system to
fully relax to a steady configuration. Though a reliable method
of directly quantifying stress in our simulations is currently
lacking, the assumption of linear elasticity will produce
accurate stress-strain conversions whenever plastic flow / stress
dissipation is negligible and strain is not exceedingly large.
We can confidently apply this assumption here (τzx = Czxεzx)
to obtain results in terms of stress, which can be directly
compared with Eq. (15). Expected errors are <1–2 % for
εzx � 0.05.

Simulation results are compared with the predictions of
Eq. (15) in Fig. 9. The lines show Eq. (15) with elastic
parameters as determined from simulations. The agreement
is in general good for all values of H0, with the expected trend
of diverging separation clearly visible. The strain at which
divergence appears to occur agrees well with the predictions
for small γISF, though not surprisingly shows increasing
deviation as γISF and εzy become large. These findings
demonstrate that nontrivial defect properties associated with
interactions between defects and applied stresses can be
accurately modeled with this approach.

D. Peierls stress/strain for dislocation glide

Dislocation motion is the dominant microscopic element
of plastic deformation in most crystalline and polycrystalline
metals. The minimum strain required to move a dislocation,
the Peierls strain εP, is therefore a fundamental material
property that can qualitatively alter a material’s macroscopic
plastic response, yield stress, etc. Face-centered-cubic metals,
in which dissociated dislocations and stacking faults are
prevalent, typically exhibit a characteristic slip activity that
derives directly from the nature of the dissociated dislocation
structure and the anisotropy of its Peierls barrier. Stacking
faults are stable only on {111} planes, and the Peierls barrier
for motion of the partials is normally very small or negligible
within the same {111} slip planes. The result is that a large

majority of slip activity occurs only within {111} planes, and
a regime of qualitatively different plastic response emerges
when cross-slip between {111} planes becomes active. Thus a
faithful description of the underlying Peierls barrier is central
to any model of crystal plasticity, and will naturally give rise
to many of the secondary features and processes that emerge
from the fundamental mechanism.

Accurate measures of Peierls stresses τP in fcc metals have
proven difficult to obtain through atomistic computations, due
to the smallness of τP relative to typical boundary image
stresses in finite-size simulations.41 Typical estimates thus vary
greatly in the literature, but the most reliable values measured
from molecular dynamics (MD) simulations are believed to
be on the order of 10−5 to 10−4 μ for fcc edge dislocations
and 10−4 to 10−3 μ for fcc screw dislocations.38,41,42 Experi-
mentally determined values also vary greatly, from ∼10−6 to
10−3 μ, depending on the method employed.43–45 Nonetheless,
within these general ranges, screw lines are expected to have
larger barriers than edge lines, and unsplit perfect dislocations
to have larger barriers than split partial configurations.

The Peierls strains for glide of edge and screw dislocations,
dissociated and undissociated, were measured by applying
shear to each system as described in the previous subsection.
Equation (4) with α = 1 and β = 1/100 was again employed,
though in this case shear strain εzy was applied. This orien-
tation, unlike εzx , produces uniform glide of both dislocation
types, with split partials gliding in the same direction. εP was
defined as the magnitude of applied strain at the instant a
given defect has glided a distance equal to its Burgers vector
magnitude b.

The simulation results shown in Fig. 10 bear out all
of the expectations noted above with only relatively minor
quantitative deviations. All dislocations exhibit the same
roughly

√
ε̇ barrier strain dependence for sufficiently large

shear rates. The cause of this behavior is discussed below,
but our primary interest is in the limiting values obtained
at small shear rates. Since the amount of dislocation motion
in these simulations is negligible, we can again apply linear
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224112-9



BERRY, PROVATAS, ROTTLER, AND SINCLAIR PHYSICAL REVIEW B 86, 224112 (2012)

stress-strain relations to report Peierls stresses rather than
strains (τP � μεP). The unsplit screw Peierls stress approaches
a value within the expected range τP � 6 × 10−4μ, while the
average Peierls stress for the split screw is slightly lower,
τP � 3.5 × 10−4μ. The measured values for the leading and
trailing screw partials differ by a small amount. This may be
a consequence of weakly asymmetric periodic image forces
generated by the simulation boundaries, or of an initial d

value that is incommensurate with the periodicity of the Peierls
potential, as discussed in Ref. 45.

The widely split edge dislocation exhibits much less
deviation between leading and trailing τP values, though
the apparent limiting value is not smaller than that of
the perfect edge dislocation to within expected error. Both
configurations approach a value that appears to extrapolate to
τP � 3 × 10−5μ, also within the expected range for typical fcc
edge dislocations. It was observed that edge dislocations tend
to glide with a relatively uniform, continuous progression,
while screws exhibit a more pronounced stick-slip hopping
motion with each unit of translation, indicative of a larger
Peierls barrier. These results together demonstrate that the
fundamental features of fcc Peierls stresses are captured quite
reasonably by this relatively simple PFC model.

The apparent relation εP ∼ √
ε̇ for larger shear rates can

be obtained as follows. Based on our results, there appears to
be an intrinsic time scale τ associated with relaxation of an
entire defect structure, including the core region and the long-
range displacement fields. If shear is applied slowly relative
to τ , the core region and the long-range displacements can
evolve cooperatively such that the inherent Peierls barrier of
the given dislocated system, δF̃P, is realized. If ε̇−1 is large
relative to τ , then the short-range and long-range components
cannot relax with optimal synchronization. This introduces
nonequilibrium effects and alternate relaxation processes that
lead to measurement of some larger effective barrier δF̃Eff =
δF̃P + δF̃NEQ.

In the PFC formulation, slow relaxations near equilibrium
are diffusive whether one uses Eq. (3) or Eq. (4). Thus
the intrinsic defect time scale τ can be approximated as an
exponential relaxation time, and neglecting other relaxations,
F̃NEQ should be, to a first approximation, an exponential
function of the dimensionless parameter τ ε̇. We therefore
may write δF̃NEQ ∼ eτ ε̇ − 1 or δF̃NEQ ∼ τ ε̇ in the small τ ε̇

limit. Combining this relation with a linear elastic response,
δF̃Eff ∼ ε2, we obtain εP ∼

√
δF̃Eff ∼

√
δF̃P + cτ ε̇ where c

is a constant. This form and the corresponding unexpanded
form both fit our results well, indicating that the competition
between rate of applied shear and rate of diffusive strain
field relaxation leads to an increased effective Peierls strain
with relevant control parameter τ ε̇. The observed system size
dependence of εP is also consistent with this expression.

E. Dynamic contraction of dissociated dislocations

When the glide-inducing stress τzy is applied to a dis-
sociated dislocation, the Peierls barrier is overcome quite
quickly and glide is initiated within the slip system of
the defect. The structure of the extended defect may then
be altered by dynamic effects associated with navigation of
the Peierls potential as well as drag or damping forces of
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1 − v2/α2). Model parameters are the same as those
of Fig. 7.

various origins. Employing the dynamics of Eq. (4), we applied
fixed shear strain rates to the dissociated edge and screw
dislocation configurations already described, and allowed each
to approach a steady-state glide velocity v, while monitoring
the separation between paired partials d. Similar results were
obtained for both dislocation types, and those for the H0 = 0
edge dislocation are shown in Fig. 11. For relatively low
steady-state velocities (v � 0.1α), d was found to exhibit
regular oscillations in time. These oscillations, which can
be seen in the lowest shear rate data displayed in Fig. 11,
are not unlike the so-called breathing modes observed in MD
simulations,46,47 though their period appears to be significantly
longer and more regular in these PFC simulations.

At higher velocities a dramatic decrease in d was observed,
followed by a return approximately to the initial d upon release
of strain. Since the shear strain εzy does not significantly alter
γISF or the repulsive force between static paired partials, this
contraction appears to be a fully dynamic effect. We believe
that the primary mechanism at work is a difference in the
frictional drag force experienced by each partial at high PFC
velocities or, similarly, a reduction of the drag force exerted on
the extended defect structure as a whole. Either scenario may
result from the difference in screw-edge character between
the two partials38 or may be driven by a cooperative drag-
reduction process analogous to the phenomenon of drafting or
slipstreaming in fluid dynamics.

At low velocities, where the effect of drag is small, v

is determined primarily by the height of successive barriers
in the Peierls potential. Thus any forces that might change
the dissociation width are small, though they may become
large enough to generate low-amplitude breathing modes. As
v increases, the Peierls potential becomes less relevant and
the effect of frictional drag becomes large. In this regime, a
dissociated defect may experience a larger total drag force
than an undissociated one due to its greater extension. The
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total drag force may be reduced, thus increasing v at a given
strain, by reducing d such that the trailing partial assumes
an optimized lower-drag position within the leading wake or
slipstream. At large enough velocities, the reduction in drag
force experienced by the full defect under contraction may
compensate for the increase in local defect energy. The energy
of the entire system is reduced by the excess strain relief that
is a consequence of faster dislocation glide.

We can modify the analysis given in Ref. 38 to incorporate
such an effect into the predicted steady-state value of d. The
steady-state force balance between gliding paired partials can
be written38

γISF + B = D1 + A

d
,

(16)

γISF + D2 = C + A

d
,

where A is an abbreviation of the terms multiplying γ −1
ISF in

Eq. (13), B and C are the forces per unit length on �b1 and
�b2, respectively, due to the applied shear, and D1 and D2 are
the damping forces per unit length on the moving partials.
First we assume that both partials experience the same force
due to the applied shear strain (B = C) and that the nominal
drag force on each PFC dislocation obeys a Stokes’ law form
(Di � Cdv), as shown in Ref. 9. The drag coefficient should
roughly be given by Cd � μ/M , where M = v/ε � 3 is the
partial dislocation mobility. Finally, since we assume that D2

decreases with d [D2 = Cdvf (d)] a plausible functional form
for f (d) must be proposed. We will use f (d) = δd/(δd + cvv)
where δd = d + d0, and d0, cv are constants.

A fit to the resulting equation for d vs v is shown in Fig. 11.
The only adjustable parameters in the fit are d0 and cv , and
the agreement is very good. Semirelativistic contraction of
strain fields in the glide direction has also been predicted
for dislocations moving at velocities near the sound speed α

of the crystal.38 A curve illustrating this effect is shown in
Fig. 11, where it is assumed that both partials experience
the same contraction effect and reduce d accordingly. This
mechanism does not have a large effect until the sound speed
is approached and its form is not consistent with our results.
Furthermore, we observe similar behavior to that shown in
Fig. 11 when dynamics are given by Eq. (3), which does not
introduce a sound speed.

The PFC description is generally best suited for examining
behavior under relatively low strain rates or driving forces,
where dislocation velocities tend not to closely approach
the sound speed. Nonetheless, a better understanding of the
nature of the interaction between moving dislocations and the
quasiphonons described by Eq. (4) would be useful in terms of
confirming that the artificially low sound speeds employed
in PFC simulations do not qualitatively alter the low and
intermediate velocity dislocation dynamics. Details of these
issues are deferred to a future publication.

IV. DISCUSSION AND CONCLUSIONS

The primary factors controlling defect stability in PFC
models have been examined, and it has been demonstrated
that broad correlation kernels or elastically soft crystals
produce the greatest defect stability. Maximally broadened

kernels appear to be necessary for stabilization of certain
defects such as planar faults in the small wave number
PFC approximation. Higher wave number correlations with
narrower peaks were also shown to improve stability in some
cases, but this feature leads to greatly reduced model efficiency.
The inherent conflict between crystal stability and defect
stability in broad kernel models suggests potential limitations
to the complexity of structures that can be described by such
models. Any such limitations were shown to be nonfactors in
the case of the primary defect structures in close-packed fcc
crystals.

Stacking faults with low inherent stability were stabilized
in four PFC variants, indicating that considerable defect
stability can be obtained without losing crystal stability. The
central defect structure in fcc plasticity, dissociated partial
dislocations with stacking faults, has been examined in some
detail and shown to be well described by PFC methods.
The dependence of the equilibrium dissociation width on
stacking fault energy has been shown to agree with continuum
elastic predictions for both edge and screw dislocations,
under zero and nonzero applied external stresses. Peierls
stresses for glide of both dislocation types have also been
measured and shown to fall within the typical ranges and
relative magnitudes determined from experiments and MD
simulations. Contraction of gliding pairs of partials has been
observed at high velocities and argued to be a consequence of
large frictional drag forces on widely split partials.

The findings presented in this article are intended to lay the
groundwork for larger-scale PFC studies of plasticity in fcc
crystals, with the potential to examine experimentally relevant
strain rates, nonconservative/climb-driven defect evolution,
and processes in which diffusing solute atoms interact with
mobile and/or immobile defect structures. These, in practice,
are inaccessible to conventional MD simulations. Conversely,
PFC models cannot reliably access the rapid time scales of MD
and likely cannot predict some details of more complex defect
atomic core structures as accurately as MD. Microscopic phase
field (MPF) models of defects48 are related to PFC in the
sense that both employ phase field methodologies, but MPF
models utilize a top-down approach, explicitly building the
defect physics in by hand. PFC models employ a far simpler,
atomic-level free energy functional, from which all defect
physics automatically emerge with fewer imposed constraints
and with straightforward dynamical extensions. Nonetheless,
by directly incorporating ab initio data such as γ -surface
energies,49,50 MPF models have proven highly effective in
terms of predicting static core-level defect structures and
energies with greater quantitative accuracy than current PFC
descriptions. At a more coarse-grained level, both discrete
dislocation dynamics models51 and coarse-grained phase field
dislocation dynamics models48 readily describe length scales
inaccessible to MD, MPF, and PFC. Similarly large length
scales are in principle also accessible to coarse-grained
complex amplitude representations of PFC models,4–8 which
still retain atomistic resolution.

Targeted PFC studies, examining more complex problems
in defect physics that involve atomic length scales and
diffusive time scales, will be the subject of an upcoming
publication. Topics that have been analyzed and will be
addressed include climb fundamentals, the structure of jogged
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dislocation lines, jog constriction, jog pair annihilation, jog
drag, screw dislocation cross-slip, formation and collapse of
stacking fault tetrahedra from triangular Frank vacancy loops,
Lomer-Cottrell or stair-rod dislocations, the interaction of
dissociated edge and screw dislocations with stacking fault
tetrahedra, and dislocation creation mechanisms.
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