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Abstract

Phase-field crystal methodology is applied, for the first time, to study the effect of alloy composition on the clustering behavior of a
quenched/aged supersaturated ternary Al alloy system. An analysis of the work of formation is adapted from a methodology developed
in Fallah et al. to describe the dislocation-mediated nucleation and growth mechanisms of early clusters in binary alloys [Phys Rev B
2012;86:134112]. Consistent with the experiments, we demonstrate that the addition of Mg to an Al–1.1Cu alloy increases the nucleation
rate of clusters in the quenched/aged state by increasing the effective driving force for nucleation, enhancing the dislocation stress relax-
ation and decreasing the surface energy associated with the Cu-rich co-clusters of Cu–Mg. Furthermore, we show that it is thermody-
namically favorable for small subcritical clusters to have higher affinity for Mg than larger post-critical Cu-rich clusters, particularly
depicting a two-stage clustering phenomenon.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The earliest stage of structural decomposition during
quench/ageing of supersaturated solid solutions, referred
to as solute clustering, is a crucial step for establishing their
final microstructure. Solute clustering controls the mechan-
ical properties of alloys through the dispersion pattern of
small coherent lattice aggregates, namely clusters and/or
Guinier–Preston (GP) zones. This phenomenon, also
known as early-stage age hardening, is strongly influenced
by the chemical composition of the alloy, especially in
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multicomponent systems. The physical mechanisms of
clustering have been poorly understood by investigators
exploring the effect of adding different elements to binary
and ternary systems, as the atomistic behavior of the clus-
tering phenomenon are often challenging to model or fully
characterize at the atomic scale.

Understanding the atomistic mechanisms of the cluster-
ing phenomenon in multicomponent alloys is of crucial
importance to efficiently design age-hardening processes
for desired properties, and to accurately interpret the
experimental observations and measurements. A system-
atic study of the clustering mechanisms precludes tradi-
tional atomistic methods, such as molecular dynamics
(MD) and thermodynamic Monte Carlo (MC) simulations,
which cannot operate on the diffusional time scales control-
ling clustering and related solid-state transformations.
rights reserved.
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Dynamic calculations with classical density functional the-
ory (CDFT) also do not apply since they too operate on
too small a time scale to be relevant to diffusion-controlled
phase transformation processes [1].

Recently, a formalism, termed the phase-field crystal
(PFC) methodology [2–6], has emerged that contains many
of the salient fundamental principles of CDFT but which is
suitably simplified so as to render calculations of micro-
structure kinetics with atomic-scale effects tractable on dif-
fusive time scales. The atomic density field in the PFC
formalism is coarse-grained in time [1] and does not have
sharp peaks in solid phases allowing lower spatial resolu-
tions. Numerous studies have reviewed and demonstrated
the physics of the PFC methodology and its usefulness in
describing a range of non-equilibrium microstructure phe-
nomena, from solidification [7,8] and grain boundary
kinetics [9,10] to clustering [11] and phase patterning due
to atomic misfit strains [12]. The most recent PFC formal-
ism developed by Greenwood et al. [5,6] employs correla-
tion kernels in the free energy that stabilize various
crystal symmetries, and examine the coexistence between
them. More recently this approach was extended to binary
alloys, represented by the dynamics of density and a con-
centration field [13].

In our most recent investigation [11] with the binary
PFC model of Ref. [13], we systematically elucidated a
complete free energy path for early-stage clustering medi-
ated by quenched-in dislocations in the bulk crystal, a
mechanism inferred initially from previous experimental
findings in binary alloys [14,15]. In particular, we showed
that the energy barrier for formation of stable clusters
can be lowered or even completely removed locally in the
bulk matrix in the presence of an assembly of quenched-
in dislocations. Here, we extend our energy analysis to ter-
nary systems. The Al–Cu–Mg system is chosen since it has
been much studied for the evolution of clusters [16–21] and
shown to exhibit enhanced clustering and age hardening by
Mg alloying [16,18]. Moreover, the dominant effect of elas-
ticity and, more particularly, the role of quenched-in dislo-
cations has been observed during the early-stage
decomposition of these alloys in quenched/aged state [20].

In this paper we use a newly developed ternary PFC
model to study the solute clustering phenomenon in ter-
nary Al–Cu–Mg alloys. The details of a multicomponent
PFC model are presented in a separate paper. In this work,
we focus on the effect of addition of a ternary species, i.e.
Mg, on the clustering behavior of these alloys. The remain-
der of this paper is organized as follows. Section 2 begins
with an introduction of the ternary PFC model. Section 3
then demonstrates the model’s equilibrium properties,
explicitly focusing on the Al–Cu–Mg system. Section 4
then discusses new simulations showing the microstructural
and compositional evolution of clusters. Section 5 details
the analysis of system energetics in terms of cluster compo-
sition and work of formation during evolution. Where
appropriate throughout Sections 4 and 5, results are com-
pared with experimental data in the literature.
2. Ternary PFC model

This section reviews the main features of a simplified
three-component free energy functional from which the
dynamics of a PFC density field and two impurity concen-
tration fields are modelled. The starting point of our model
is a multicomponent analogue of the CDFT of freezing
introduced by Ramakrishan and Yussouff [22]. Details of
the derivation of the multicomponent model are presented
in a separate publication [23]. Only the details relevant to
the ternary model used in this study are reproduced here.

2.1. Simplified ternary PFC free energy

The free energy functional of a three-component system
can be described by two contributions, ideal and excess
energy, each as a function of three density fields (i.e. qA,qB

and qC). From CDFT, we can write the following energy
functional:

DF
kBTqoV

�
Z

drf ¼
Z

drfDF id þ DF exg; ð1Þ

where DFid are, respectively, the dimensionless the ideal en-
ergy, DFex and excess energy, where kB is the Boltzmann
constant, T is the temperature, qo is the average density
(defined below) and V is the volume of the unit cell. The
ideal free energy of the mixture is given by:

DF id ¼ qA ln
qA

qo
A

� �
� dqA þ qB ln

qB

qo
B

� �
� dqB

þ qC ln
qC

qo
C

� �
� dqC; ð2Þ

where qi (with i = A,B,C) is the density of component
i; dq ¼ qi � qo

i and qo
i is the reference density of compo-

nent i, taken to be that of liquid at solid–liquid coexistence.
The excess energy term is described by a two-point cor-

relation between atoms and introduces elasticity and crys-
talline symmetry, and gives rise to interactions between
topological defects within solid phases. Considering parti-
cle interactions truncated to second-order correlations in
CDFT, this term can be written as:

DF ex ¼ �
1

2

X
i

X
j

DF ij

¼ � 1

2

Z
dr0
X

i

X
j

dqiðrÞCij
2 ðr; r0Þdqjðr0Þ; ð3Þ

where Cij
2 denotes all possible combinations of the two-par-

ticle correlations between components i and j with
i, j = A,B,C.

Following previous alloy PFC models [3,6], we define a
total mass density q ¼

P
iqi and the total reference mass

density as qo ¼
P

iq
o
i . Following Provatas and Majaniemi

[24] and Greenwood et al. [6], the concentration of each
component i is defined as ci = qi/q and the corresponding
reference compositions are chosen as co

i ¼ qo
i =q

o. For
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convenience, we define a dimensionless mass density of the
form n = q/qo � 1. From mass conservation, we haveP

ici � 1 (or cC = 1 � cA � cB and co
C ¼ 1� co

A � co
B). With

these definitions, we rewrite the free energy in terms of n

and the {ci}. In doing so, some approximations are made
for convenience. To avoid sharp density peaks, ideal free
energy terms, expressed in n, are expanded to fourth order
in the limit of small n. Also, we consider length scales
where variations in concentration are, to lowest order, slow
compared to those of the density field, which varies on an
atomic scale. In this limit, coarse-graining of the free en-
ergy or equations of motion, as in Refs. [24–27], makes
terms whose integrand is a function of slow ci fields multi-
plying the fast n field vanish. Similarly, second-order corre-
lation terms containing combinations of the ci can be
approximated by gradient terms in ci.

With the above approximations at hand, the three-com-
ponent PFC energy functional for species A, B and C can
be shown to reduce to [23]:

�F ¼
Z

dr
n2

2
� g

n3

6
þ v

n4

12
þ x DF mix ðnþ 1Þ

�
� 1

2
n
Z

dr0Ceff ðjr� r0jÞ n0 þ aA

2
jrcAj2 þ

aB

2
jrcBj2

�
;

ð4Þ

where DFmix denotes the ideal entropy of mixing:

DF mix ¼ cA ln
cA

co
A

þ cB ln
cB

co
B

þ ð1� cA � cBÞ ln
ð1� cA � cBÞ
1� co

A � co
B

:

ð5Þ
In Eq. (4), g and v are parameters introduced to control the
variation of the ideal free energy density away from the ref-
erence density qo. A parameter x is introduced to correct
the entropy of mixing away from the reference composi-
tions co

A and co
B. The gradient energy coefficients aA and

aB set the scale and energy of compositional interfaces.
The parameters g,v,x, aA and aC have been shown to have
contributions from higher order correlative interactions
[27]. Here, we treat these parameters as free coefficients
to match the free energy functional quantitatively to the de-
sired materials properties.

The correlation function, Ceff, in Eq. (4) formally
includes contributions from cross-correlation functions of
the form Cij in the excess energy. Extending the formalism
of Ref. [6] Ceff to the case of ternary alloys, we define an
effective correlation function in terms of Cii

2 according to:

Ceff ¼ X 1CAA
2 þ X 2CBB

2 þ X 3CCC
2 ; ð6Þ

where the coefficients Xi are polynomial functions, which
interpolate between two-body correlation kernels of the
pure species, weighting each by the local compositions.
The order of the coefficient Xi varies depending on the num-
ber of components in the system and this order must be such
as to smoothly interpolate from one correlation kernel to
another. The coefficients satisfy X1 + X2 + X3 � 1 at all
compositions. In this study they are defined by:
X 1 ¼ 1� 3c2
B þ 2c3

B � 3ð1� cA � cBÞ2

þ 2ð1� cA � cBÞ3 � 4cAcBð1� cA � cBÞ
X 2 ¼ 1� 3c2

A þ 2c3
A � 3ð1� cA � cBÞ2

þ 2ð1� cA � cBÞ3 � 4cAcBð1� cA � cBÞ
X 3 ¼ 1� 3c2

A þ 2c3
A � 3c2

B

þ 2c3
B � 4cAcBð1� cA � cBÞ:

ð7Þ

The bCii
2ð~kÞ are defined in Fourier space by peaks at kj,

which correspond to the inverse of interplanar spacings of
the main reflection from the jth family of planes in the unit
cell of the crystal structure favored by component i. Each
peak in reciprocal space is represented by the following
Gaussian form of width aj, the height of which is modulated
by a Debye–Waller-like prefactor, modulated by an effec-
tive temperature r and a transition temperature rMj [13]:

bCii
2j ¼ e

� r2

r2
Mj e
�
ðk�kjÞ2

2a2
j : ð8Þ

The k = 0 mode of bCii
2j has been omitted for simplicity but

can be added through a constant. Its omission merely shifts
the value of the average density and its effect can be mod-
elled through the parameters of the model.

2.2. Model dynamics

The dynamic equations of motion for each density field
follow dissipative dynamics with stochastic noise in each
field [28]. When rewriting these equations in terms of a
total density and two concentration fields, and neglecting
the noise terms in each equation, we arrive at equations
analogous to those used by Elder and co-workers in their
alloy model [3], namely:
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Mn; McA and McB are dimensionless mobility coefficients
for density and composition fields, which are, in principle,
functions of the density, composition fields and tempera-
ture. In this study, at a given temperature, the mobility



Fig. 1. The Al-rich side of an isothermal cut (i.e. at 400 � C) from the
experimental phase diagram of the Al–Cu–Mg system reprinted from Ref.
[29]; the dashed circles mark the Al-rich, (Al), Cu-rich, (h) and Mg-rich,
(b) phase concentration regions considered for reconstruction by the PFC
model phase diagram, as shown in Fig. 2. The dashed line represents the
compositional boundary for Cu and Mg in our phase diagram
calculations.
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coefficients will be set to constants (i.e. equal to 1 for all
mobilities).

3. Equilibrium properties

We examined the equilibrium properties of a 2-D Al–
Cu–Mg system by constructing isothermal phase diagrams
at two temperatures, i.e. r = 0.155 and r = 0.04, corre-
sponding to solutionizing and quench/ageing temperatures,
respectively. These temperatures are chosen to be well
below the solid–liquid coexistence (solidus) temperature.
The coexistence lines at each temperature are obtained by
performing a common tangent plane construction on the
free energy surfaces of solid phases expanded around the
reference density ð�n ¼ 0Þ. The free energy surfaces of solid
phases with square symmetry are calculated using a two-
mode approximation of the density fields, given by:

nið~rÞ ¼
XNi

j¼1

Aj

XNj

l¼1

e2pi~kl;j�~r=ai ; ð12Þ

where the subscript i denotes a particular solid phase with a
lattice spacing ai, and the index j counts the number of
modes 1 � � � Ni in the i-phase. Aj is the amplitude of mode
j and the index l counts the Nj reciprocal space peaks rep-
resenting the mode j.~kl;j is then the reciprocal lattice vector
corresponding to the index l in family j, normalized to a lat-
tice spacing of 1.

The free energy surface for each phase can be calculated
as a function of the two composition variables, cCu and
cMg, by substituting the above approximation of density
field into Eq. (4) and integrating over the unit cell. This
resulting free energy of the crystalline phase is then mini-
mized for the amplitudes Aj. The minimization methodol-
ogy is described in more detail in Ref. [13,23].

In the Al-rich corner of the experimental Al–Cu–Mg
phase diagram, shown in Fig. 1, there is a binary eutectic
transition between the Al-rich (Al)-face-centered cubic
(fcc) phase and an intermediate phase h (containing
�32.5 at.% Cu) with a tetragonal crystal structure. The
(Al)-h system has a small solubility for Mg, reaching a
maximum of �2 at.% Mg near the Al-rich side. Following
the phase diagram in Fig. 1, adding more Mg to the (Al)-h
system leads to the formation of a series of intermediate
phases, such as S, T and b. The latter is the cubic b-phase
in the binary Al–Mg system with Mg content of
�38.5 at.%. In our 2-D model, we construct a phase dia-
gram that that maps onto the ternary eutectic system of
(Al)-h-b, with all solid phases having square symmetry
but differing in Cu and Mg content. The lattice constant
(and thus the reciprocal space peaks) of h is interpolated
between that of pure Al and Cu at 32.5 at.% Cu. This cal-
culation is also performed for the lattice constant of b con-
sidering 38.5 at.%Mg in the Al–Mg system. The free energy
of the solid phase is generally calculated with a variable lat-
tice constant weighted by concentrations cCu and cMg using
the interpolation functions defined in Eq. (7). The polyno-
mial fitting parameters in Eq. (4) (namely g, v and x) and
the width of various peaks (aj) in the correlation kernel bCii

2j

are then selected so as to obtain approximately the same
solubility limits for Cu and Mg in the solid phases as those
in the experimental phase diagram. The parameters used
are given in the caption of Fig. 2.

Fig. 2 shows the free energy landscapes of solid and
liquid along with the corresponding phase diagrams con-
structed for solutionizing and ageing temperature parame-
ters of the model, i.e. r = 0.155 and r = 0.04, respectively.
To construct the isothermal phase diagrams, the coexis-
tence (solidus) lines for (Al)-h, (Al)-b, b-h and (Al)-b-h were
obtained by requiring that the chemical potential and
grand potential are equal for each species in the chosen
phases. For example, the following set of equations were
solved to find the (Al)-h coexistence line:

lðAlÞ
cCu
¼ lh

cCu

lðAlÞ
cMg
¼ lh

cMg

f ðAlÞ � lðAlÞ
cCu

cðAlÞ
Cu � lðAlÞ

cMg
cðAlÞ

Mg

¼ f h � lh
cCu

ch
Cu � lh

cMg
ch

Mg;

ð13Þ

where lcCu
¼ @f =@ðcCuÞ and lcMg

¼ @f =@ðcMgÞ are the
chemical potentials of the concentrations cCu and cMg,
respectively. Fig. 2d shows good agreement, in terms of
the solubility of Mg, of the single-phase (Al) and multi-
phase (Al)-h structures, in the dilute-Mg part of the exper-
imental phase diagram of Fig. 1 and that of the constructed
one at r = 0.04.

4. Clustering simulations

This section presents simulation results of the clustering
phenomenon in the Al–Cu–Mg system in the form of
microstructural and compositional evolution of clusters;



Fig. 2. Solid and liquid energy landscapes of a square–square–square ((Al)-b-h) system at temperatures (a) r = 0.155 and (c) r = 0.04; corresponding
reconstructed phase diagrams at temperatures (b) r = 0.155 and (d) r = 0.04; the parameters for ideal free energy and entropy of mixing were
g ¼ 1:4; v ¼ 1; x ¼ 0:005; co

Cu ¼ 0:333 and co
Mg ¼ 0:333. Widths of the correlations peaks are taken as a11 = 0.8 and a10 ¼

ffiffiffi
2
p

a11 for all phases (the
required ratio for isotropic elastic constants in a solid phase with square symmetry [13]). The peak positions are k11ðAlÞ ¼ 2p; k10ðAlÞ ¼ffiffiffi

2
p

k11ðAlÞ; k11h ¼ ð2:0822Þp, k10h ¼
ffiffiffi
2
p

k11h; k11b ¼ ð1:8765Þp and k10b ¼
ffiffiffi
2
p

k11b. For simplicity, the effective transition temperatures rMj are set to 0.55
for all familes of planes in all phases; the concentrations cCu and cMg are rescaled considering the maximum Cu and Mg content in the h-phase and b-phase
according to the experimental phase diagram, i.e. �32.5 and �38.5 at.%, respectively; The concentrations on the isothermal cuts are read in Cartesian
coordinates.

V. Fallah et al. / Acta Materialia 61 (2013) 3653–3666 3657
the results are compared with relevant experimental evi-
dence gathered from the literature.

Using the calculated equilibrium properties discussed in
the previous section, simulations of clustering were per-
formed on a 2-D rectangular mesh with grid spacing
dx = 0.125 and time step dt = 10. The size of the grid
was 4096 � 4096 grid spacings (equivalent to
512 � 512 atoms). Each atomic spacing was resolved by
eight mesh spacings considering lattice parameter of 1 for
a 2-D square structure. To solve the dynamic equations,
a semi-implicit algorithm was used in Fourier space for
higher efficiency. The initial conditions were chosen to
include the quenched-in dislocations in the bulk crystal,
which are proposed to play a dominant role during the
early stage clustering in quenched/aged Al–Cu and Al–
Cu–Mg alloys [14,15,17,20,30]. Following Fallah et al.
[11], initial conditions included a crystal lattice of uniform
composition, which is distorted at the quench temperature
by introducing a uniform distribution of edge dislocations
with a number density of u1 dislocation per 100 atoms.
The choice of dislocation number density was based on
the simulation trials that showed a negligible chance of
occurrence of a complete clustering transformation at dis-
location number densities smaller than u0.9 disloca-
tion per 100 atoms for the above size of the simulation
domain. While the kinetics of clustering during the simula-
tion, and thus the cluster number density and size distribu-
tion, were affected by the initial density of dislocations, the
overall transformation path was the same as suggested by
the equilibrium phase diagram (i.e. the decomposition of
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the quenched single-phase structure into a two-phase struc-
ture). As with the previous study [11], the character of dis-
locations is not the focus of this 2-D study, and they are
simply defined with edge dislocation characteristics, with
the dislocation line perpendicular to the surface and a Bur-
gers vector of one lattice spacing lying on the surface.
Although in this study we investigate the dislocation-med-
iated formation mechanisms of post-critical clusters, we
expect that the proposed mechanisms will also hold for
vacancy-assisted clustering.

Fig. 3a–d and e–h show the PFC simulation results for
quench/ageing of Al–1.1Cu and Al–1.1Cu–0.2Mg, respec-
tively, from the solutionizing temperature of r = 0.155 to
r = 0.04. Labelled on these images are the typical stable
clusters “a” and “a0” in the Al–1.1Cu and Al–1.1Cu–
0.2Mg alloys, respectively, that survived the growth com-
petition among the other clusters. As can be inferred from
Fig. 3, the number of observed clusters within the unit area
of simulation, at each time step, is much larger for Al–
1.1Cu–0.2Mg alloy compared to Al–1.1Cu alloy. The
zoomed-in images of the area within the box labelled clus-
ter “a0” in Fig. 3h is shown in Fig. 4a and b at time steps
t = 1000 and t = 30,000, respectively. Fig. 4a shows how
initially the Cu atoms segregate into the areas around the
dislocations. Over the simulation time, as illustrated in
Fig. 4b, the system undergoes a process of rearrangement
and/or annihilation of dislocations within the matrix, lead-
ing to the formation of cluster “a0”.
Fig. 3. Time evolution of clusters in solutionized/quenched (a)–(d) Al–1.1Cu a
stable clusters “a” and “a0” are labelled on the microstructures of the Al–1
simulation domain with 512 � 512 atoms.
The selected alloy compositions for this study (i.e. Al–
1.1Cu and Al–1.1Cu–0.2Mg) are within the single-phase
region of (Al) at the solutionizing temperature, while they
are located within the two-phase region of (Al)-h at the
quench/ageing temperature (i.e. r = 0.155 and r = 0.04,
referring to the phase diagrams in Fig. 2b and d, respec-
tively). With these concentrations, during clustering simu-
lations, we expect to observe Cu-rich clusters evolving
with the composition of the equilibrium h-phase (as can
be seen on the final microstructures shown in Fig. 3d and
h). Also, having used square symmetry for all species, the
lattice parameter will be the only structural factor expected
to change as a cluster evolves in the matrix during the 2-D
clustering simulations. Intermediate non-equilibrium
phases in Al–Cu–Mg system, which are not predicted by
the experimental phase diagram, were not considered in
this study.

During the simulation of the ageing process in both
alloys, first small clusters form with a slightly higher Cu
and Mg content than that of the matrix. As ageing pro-
gresses, some of these clusters shrink in size and become
depleted in Cu and Mg, but a few become stabilized (e.g.
all the clusters shown in Fig. 3d and h, and typically those
labelled “a” and “a0” for Al–1.1Cu and Al–1.1Cu–0.2Mg
alloys, respectively). In contrast, ageing at a temperature
within the single-phase (Al) region for both alloys, i.e.
r = 0.145, results in complete elimination of distortion,
as expected.
nd (e)–(h) Al–1.1Cu–0.2Mg alloys at model temperature r = 0.04; typical
.1Cu and Al–1.1Cu–0.2Mg alloys, respectively; each image represents a



Fig. 4. Zoomed-in images of the area within the box labelled cluster “a0” (in Fig. 3h) in the Al–1.1Cu–0.2Mg alloy at (a) t = 1000 and (b) at t = 30,000
time steps; black dots indicate atomic positions and T-shaped symbols mark the dislocations.

Fig. 5. Number density vs. cluster size distribution in solutionized/
quenched Al–1.1Cu and Al–1.1Cu–0.2Mg alloys.
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4.1. Effect of Mg on the evolution of microstructure

A typical simulation result is used to study the effect of
adding Mg to Al–1.1Cu alloy on the evolution of clusters,
as illustrated in Fig. 3. The cluster radius R, measured in
terms of the number of atoms, is defined by radially aver-
aging the radius of the concentration field bound by a
threshold of concentration cth

Cu defined by:

cth
Cu ¼ cb

Cu þ
PN cCu � cb

Cu

N
; ð14Þ

which neglects the small concentrations of Mg. Here, N is
the number of mesh points within the selected domain con-
taining the cluster, and the superscript ‘b’ denotes bulk
properties. cb

Cu defines the far-field concentration of Cu
within the above-selected domain. The number density of
clusters is estimated by normalizing the number of clusters
of each size range within the simulation domain with re-
spect to the unit cell area of a 2-D square crystal structure
with the lattice parameter of 2rAl

fcc ¼ 2:86� 10�8 cm. The
number density of clusters and their size distribution is
plotted in Fig. 5, at t = 30,000 time steps. The data shows
that Mg alloying in Al–Cu alloy promotes clustering
through an increase in the number density and a reduction
in the average size of the clusters, as also noted from Fig. 3.

These simulation results are consistent with a number of
experimental observations made on the quenched/naturally
aged Al–Cu–Mg alloys using a combination of transmis-
sion electron microscopy [16], PAS [16,18] and the 3-D
atom probe technique (APT) [16,21]. With the APT tech-
nique, Ringer et al. [21] and Marceau et al. [16] found that
pre-precipitate Cu–Mg co-clusters of �3–20 atoms are dis-
tributed within the solid-solution matrix at an early stage
of ageing of the solutionized and quenched Al–1.1Cu–
(0.2–1.7)Mg alloys. In particular, Marceau et al. [16] noted
a marked increase in the number density of clusters of var-
ious sizes by raising the Mg content in these alloys. Nota-
bly, the increase in number density was more pronounced
for smaller cluster sizes, leading to a smaller average cluster
size for alloys with higher Mg content. Furthermore, posi-
tron annihilation spectroscopy (PAS) of these alloys in the
quenched state showed a significant increase in the positron
lifetime at higher Mg contents, indicating that Mg may sta-
bilize the free volume in the matrix (i.e. increase the num-
ber density of quenched-in defects), possibly by co-
clustering with Cu [16,18]. Somoza it et al. [18] also
observed that in Al–1.74Cu–0.35Mg alloy, immediately
after quenching, the Cu content at the positron annihila-
tion site was higher than that in Al–1.74Cu alloy. They also
pointed out that Cu–Mg complexes acted as embryos for
further aggregation of Cu, resulting in higher kinetics of
clustering during ageing of the solutionaizd/quenched Al–
1.74Cu–0.35Mg alloy compared to that in Al–1.74Cu alloy.
Rapid solute aggregation during the early stage of ageing
of solutionized/quenched Al–Cu–Mg alloys has been sug-



Fig. 6. Evolution of (a) composition and (b) Mg/Cu ratio for cluster “a0”

shown in Fig. 3e–h. R = 0 defines the centre of the cluster.
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gested through calorimetric measurements by Zahra et al.
[31].

4.2. Evolution of cluster composition

The compositional evolution of cluster “a0” (marked on
the images shown in Fig. 3d–h), as it grows in the solution-
ized/quenched Al–1.1Cu–0.2Mg alloy, is illustrated in
Fig. 6. The cluster composition is estimated by averaging
within a circle of radius R, which is determined by a thresh-
old Cu content (i.e. cth

Cu as defined by Eq. (14)). From the
data of Fig. 6, we find that the Cu content continuously
rises towards its equilibrium value in the h-phase (i.e.
ceq

Cuu32:8 at:%), as specified by the constructed phase dia-
gram (Fig. 2). Meanwhile, the Mg content and Mg/Cu
ratio reach their maximum before they continuously drop

close to their equilibrium values (i.e. ceq
Mgu0:29 at:% and

cMg

cCu

� �
eq
u0:009) in the h-phase. Here, the formation process

of a Cu-rich cluster with the equilibrium concentration can
be divided into two successive steps: (i) an increase in both
Cu and Mg content within the small early clusters; and (ii)
a reduction in the Mg content while the cluster continues to
attract more Cu atoms and grows in size until it forms a
stable Cu-rich Cu–Mg cluster. The above evolution of
composition during the two-stage clustering is investigated
in more depth in the next section through a detailed anal-
ysis of the system thermodynamics, which is also supported
by relevant data from existing experiments.

5. Analysis of cluster formation

Formation of clusters is studied through the analyses of
the energy in the system from the earliest small embryos to
final stable clusters. First, the energetic mechanisms of
compositional evolution are investigated for a small
embryo forming around strained regions in the matrix
(i.e. around the dislocation displacement fields) until it
grows into a stable cluster.

5.1. Compositional change from embryo to cluster

The early small clusters, also called embryos, show an
increase in the Mg content and Mg/Cu ratio (as illustrated
in Fig. 6) up to �14 atoms in radius. This phenomenon can
be qualitatively explained by considering a metastable
coexistence between the strain-free bulk matrix and the
strained areas near dislocations containing a small cluster
(i.e. blue and red energy surfaces, plotted in Fig. 7a and
b, respectively). Following the methodology of Fallah
et al. [11], the effect of strain on the mean field approxima-
tion of the free energy of the system is evaluated in the solid
state, at a given temperature of r = 0.04, and shown in
Fig. 7b. In this methodology, the magnitude of distortion
caused by the displacement fields of dislocations near the
cluster is evaluated and mapped onto an effective uniform
strain. The strain magnitude is then used to calculate the
free energy of the distorted structure shown in Fig. 7d,
which represents an area containing the early-stage devel-
opment of a cluster (labelled “a0” in Fig. 3f). The concen-
tration map of Cu is shown overlaid on the
microstructure in Fig. 7d, revealing the segregation of Cu
into the distorted areas near dislocations. The concentra-
tion map of Mg also follows the same path qualitatively.
The strain value is approximated with the following
formula over the triangulated density peaks using the
Delaunay triangulation method:

� ¼
XNtri

i¼1

X3

j¼1

aij � ao

ao

� �
; ð15Þ

where Ntri is the number of triangles in the field, ao is the
dimensionless equilibrium lattice parameter (the number
of grid points resolving one lattice spacing, i.e. 8), and aij

is the length of the jth side of the ith triangle. The magni-
tude of strain for the particular structure shown in
Fig. 7d is estimated to be � � 0.02. At a given temperature,
the strain can be evaluated by calculating the peaks of the
correlation kernel bCii

2j in reciprocal space, at locations kj

defined by a slight deviation from those of the equilibrium
density peaks. The following equation defines the amount
of strain:

� ¼ jk� kjj=kj; ð16Þ
where index j denotes one family of planes in reciprocal
space.

For the alloy Al–1.1Cu–0.2Mg, the common tangent
plane construction illustrated in Fig. 7c reveals a set of
compositions for a coexisting unstrained matrix and
strained solid in the vicinity of dislocations. In particular,
it denotes higher concentrations of Mg and Cu in the



Fig. 7. (a) The free energy of the unstrained matrix; (b) the mean-field approximation of the free energy of a uniformly strained matrix at � = 0.02; (c)
metastable coexistence between the strain-free matrix (blue surface) and the strained regions (red surface) around the dislocations at a temperature of
r = 0.04; (d) area around cluster labelled “a0” in Fig. 3f at an early stage of the transformation, t = 2,000 time steps. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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strained areas than those in the bulk unstrained matrix,
while the two are in a metastable coexistence. Such phe-
nomenon of segregation of solute atoms into the strained
areas has been shown to be driven by a stress-relaxation
mechanism [11,12,32]. Fallah et al. [11] have shown that
this mechanism reduces and/or even completely eliminates
the energy barrier for formation of stable clusters in binary
alloys.

The above phenomenon is responsible for the first rise in
the Mg content illustrated in Fig. 6a. It can be argued that
initially both Mg and Cu atoms segregate into nearby dis-
locations to relax their stress fields while also forming a
small Cu–Mg co-cluster. The cluster composition estimated
from the above metastable coexistence (i.e. cCu u 6.7 at.%
and cMg u 0.7 at.%) is similar to that measured for cluster
“a0” at the peak Mg content (see Fig. 6a). The first rise in
the Mg content, and thus in the Mg/Cu ratio, is consistent
with the atom probe data of Marceau et al. [16] showing an
increase in the Mg/Cu ratio by the size of clusters up to
�13 atoms in the naturally aged Al–1.1Cu–(0.2–1.7)Mg
alloys. In addition, the PAS investigation of clustering in
Al–1.74Cu–0.35Mg and Al–1.7Cu–1.3Mg by Somoza
et al. [19] and Nagai et al. [20], respectively, showed that,
immediately after quenching, a high volume of bulk crystal
defects is associated with solute atoms [19,20].

In the second stage of clustering, while a randomly
selected small cluster continues to grow among the other
clusters, it attracts more Cu atoms, causing the Mg content
to decrease (see Fig. 6a). This occurs since the growing
cluster releases more stress from the matrix by attracting
more Cu atoms and moving towards the composition of
the equilibrium h-phase, which contains less Mg (i.e.
u0.29 at.%, referring to the phase diagram shown in
Fig. 2d) than the highly strained initial Cu–Mg co-cluster.
This phenomenon is in accordance with the experimental
evidence of the increase in local Cu content at the positron
annihilation sites (i.e. vacancy–Cu–Mg complexes) during
ageing of the solutionized/quenched Al–1.74Cu–0.35Mg
alloy [18,19]. Moreover, the PAS investigation of clustering
during early-stage ageing of Al–1.74Cu–0.35Mg [19] and
Al–1.7Cu–1.3Mg [20] alloys showed that the bulk crystal
defects mingle more effectively with Cu–Mg [19,20] aggre-
gates, which are considered to be more efficient positron
traps than single solute atoms.



Fig. 8. (a) (Al)-h-b solid-phase free-energy diagram in dilute Mg region;
(b) schematic illustration of calculation of the driving force for clustering
of a Cu-rich co-cluster of Cu–Mg at two different levels of Mg content.
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The above results and analysis suggest that although the
crystal defects are strongly attached to the solute atoms
(i.e. both Cu and Mg) immediately after quenching, they
associate more effectively with Cu atoms than Mg during
the initial growth of clusters upon ageing [19]. More specif-
ically, Nagai et al. [20] report that defects are more effec-
tively bound to Mg atoms rather than Cu atoms in the
as-quenched state. However, during the early stages of
the subsequent ageing, they observe clustering of Cu-rich
Cu–Mg complexes along the dislocations.

5.2. Work of formation

In order to investigate the effect of trace addition of Mg
on the clustering behavior of a quenched/aged dilute Al–
Cu–Mg alloy, we first analyze the work of formation of a
long-lived cluster. The work of formation for clustering is
defined as:

W h ¼ 2pRcþ pR2ð�Dfþ DGsÞ ð17Þ
where R is the cluster radius in terms of number of lattice
spacings, Df is the bulk driving force for nucleation of a
cluster at a given concentration, DGs represents the strain
energy for a coherent nucleus and c is the interfacial free
energy per unit length of the interface. We consider two
dimensions in this work but we expect the same mecha-
nisms reported below to hold in three dimensions. In par-
ticular, our preliminary 3-D simulations have yielded
qualitatively similar results, which will be presented in a
follow-up study. The above quantities are estimated below
for clustering in Al–Cu–Mg alloys lying within the two-
phase region of (Al)-h. The evolving clusters are then Cu-
rich, close in concentration and lattice parameter to those
of the equilibrium h phase, as shown on the calculated
phase diagram in Fig. 2d.

5.2.1. Driving force for the formation of clusters

The bulk driving force for the formation of a Cu-rich co-
cluster of Cu–Mg with the equilibrium concentration is
defined as:

�Df ¼ f b � lb
cCu
jcb

Cu
cb

Cu � ccl
Cu

	 

� lb

cMg
jcb

Mg
cb

Mg � ccl
Mg

� �
� f cl;

ð18Þ
where the superscripts “b” and “cl” denote the bulk matrix
and cluster “phase” quantities, respectively. Fig. 8a shows
a low-Mg section of (Al)-h-b solid-phase free-energy dia-
gram. Using this free-energy diagram, we compute the
approximate driving force for clustering of a Cu-rich co-
cluster of Cu–Mg for two different Mg contents (see
Fig. 8b). The illustration of these calculations in Fig. 8b ex-
cludes the effect of lb

cMg
in Eq. (18) on the driving force,

assuming the overall difference in the Mg content between
the matrix and final Cu-rich cluster is negligible. It can be
seen that Mg alloying increases the driving force for clus-
tering of the Cu-rich clusters (see also Fig. 9c). In other
words, addition of a small amount of Mg into the Al–
1.1Cu alloy decreases the solubility of Cu (i.e. from �0.8
to � 0.6 at.%Cu by adding 0.2 at.%Mg, obtained from
the common tangent construction in Fig. 8b), thus raising
its supersaturation in the quenched state.

5.2.2. Strain energy created by clusters

The strain energy for a coherent nucleus is evaluated by
[33]:

DGs ¼ 2GAd
2 KB

KB þ GA
; ð19Þ

where

d ¼ ðaCu � aAlÞ cCu � cb
Cu

	 

þ ðaMg � aAlÞ cMg � cb

Mg

� �
ð20Þ

is the misfit strain and GA and KB are 2-D shear and bulk
moduli, respectively, calculated from the PFC 2-D mode
approximation [6]. Following Greenwood et al. [6], in the
limit of small deformations [26], the free energy of different
strained states in a 2-D crystal of square symmetry is evalu-
ated by substituting their respective coordinate transforma-
tions into a two-mode approximation of the density field
and integrating over the bounds of the strained unit cell.
The elastic constants C11, C12 and C44(C12 = C44 = C11/3)



Fig. 9. The effect of Mg on (a) the shear and bulk moduli, GA and KB, respectively, (b) the misfit strain d, (c) the bulk strain energy, DGs, and the driving
force of formation, Df, and (d) the surface energy associated with Cu-rich co-clusters of Cu–Mg in an Al-rich matrix of Al–1.1Cu–xMg alloys.
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are then extracted through fitting the resultant free energy to
parabolic expansions in displacement fields. In two dimen-
sions, the shear and bulk moduli can be simply defined as
GA = C44 and KB ¼ C11þC12

2
(radially averaged for square

symmetry [6]), respectively [2].
We calculate the bulk modulus for the Cu-rich cluster of

the equilibrium concentration and the shear modulus for
the Al-rich matrix for varying Mg content, according to
the approach presented in Ref. [33]. Fig. 9a and b shows
the effect of Mg alloying on the elastic moduli of Al–
1.1Cu–xMg alloys and the misfit strain, d, respectively, cre-
ated by clustering of a Cu-rich cluster of the equilibrium
concentration. For higher Mg contents, the combination
of a reduction in the bulk and shear moduli of the matrix
and an increase in the misfit strain created by the formation
of a Cu-rich cluster results in higher strain energy values (as
illustrated in Fig. 9c).

5.2.3. Surface energy of clusters

Assuming a low dislocation density in the system, the
interfacial free energy is taken to be solely chemical,
neglecting the structural contributions [34]. Following
Cahn and Hilliard [35], the interfacial energy between a
Cu–Mg co-cluster and the Al-rich matrix is evaluated by
the following analytical form which uses the composition-
dependent mean-field free energy, f(cCu, cMg):
c ¼ 2

Z ccl
Cu

cb
Cu

½aCuðf� f bÞ�
1
2 1þ aMg

aCu

� �
dcMg

dcCu

� �2
( )1

2

dcCu; ð21Þ

where aCu and aMg are gradient energy coefficients for Cu
and Mg, respectively, both set to 1 in this study. The term

dcMg

dcCu
is estimated by �

@f
@cCu
@f

@cMg

, and the variation of cMg with re-

spect to cCu is approximated by a linear interpolation be-
tween the bulk and the equilibrium cluster compositions�

i:e: cMg ¼ cb
Mg þ

ccl
Mg�cb

Mg

ccl
Cu�cb

Cu
cCu � cb

Cu

	 
�
: As illustrated in

Fig. 9d, increasing the amount of Mg in Al–1.1Cu–xMg al-
loys decreases the surface energy of the Cu-rich clusters.

Fig. 10a depicts the evaluation of the work of formation
in Eq. (17), which combines the effects of the computed val-
ues of the surface and strain energy and the driving force of
clustering. As can be inferred from this figure, the addition
of Mg to the Al–1.1Cu alloy lowers the energy barrier
height and the critical size of nuclei for the formation of
a stable Cu-rich Cu–Mg cluster.
5.2.4. Effect of dislocations

The effect of dislocations on the formation of clusters
can be described, augmenting the work of formation
according to the following expression [11]:



Fig. 10. Work of formation for (a) coherent/homogeneous (evaluating Eq. (22)) and (b) dislocation-assisted (evaluating Eq. (17) for one dislocation, i.e.
Rb2

i ¼ 1) clustering of Cu-rich co-clusters of Cu–Mg in an Al-rich matrix of Al–1.1Cu–xMg alloys; (c) the variation of numerically evaluated total energy,
DGtot, due to the formation of clusters “a” and “a0”, within the boxes marked on the images shown in Fig. 3a–d and e–h, respectively.
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W d ¼ W h � DGsr þ DGd

¼ 2pRcþ pR2ð�Dfþ DGsÞ � DGsr þ DGd ð22Þ
where DGsr is the stress relaxation term due to segregation
of solute into dislocations [36], described here by:

DGsr ¼ g2vdEA lnðRÞ; ð23Þ
where A ¼ GARb2

i
4pð1�mÞ ; m ¼ E

2GA
� 1; E ¼ 4KBGA

KBþGA
is the 2-D

Young’s modulus, g is the linear expansion coefficient with
respect to concentration, vd represents the change in the
diffusion potentials due to concentration, and we introduce
Rb2

i to represent a weighted average of the magnitude of
Burgers vectors around the dislocations accompanying
the cluster and a is the lattice parameter. The prefactor g2-

vdEA accounts for the reduction in strain energy due to sol-
ute segregation around a dislocation [37]. Following the
work of Cahn and Larche [37], which approximates the
analysis of King et al. [38] and works well for dilute solu-
tions, we obtain the following approximation for the term
g2vd in an isotropic ternary system:

g2vd ¼
gMggMg

@2f
@c2

Cu
þ gCugCu

@2f
@c2

Mg
þ 2gCugMg

@2f
@cCu@cMg

@2f
@c2

Cu

@2f
@c2

Mg
� @2f

@cCu@cMg

� �2
; ð24Þ

where gCu ¼ � 1
a

@a
@cCu

and gMg ¼ � 1
a

@a
@cMg

. The estimated val-

ues of the term g2vd show an increase from 0.0547 to
0.0823 for the bulk matrix of Al–1.1Cu and Al–1.1Cu–
0.2Mg alloys, respectively. This implies that adding Mg
to the Al–1.1Cu alloy enhances the stress relaxation within
the distorted matrix through segregation of solutes (both
Cu and Mg) into areas near the dislocations.

The term DGd in Eq. (22) accounts for the increase in the
total energy of the system due to presence of dislocations.
Its form is approximated by:

DGd ¼ fA; ð25Þ
where f is a prefactor of the order 10, representing the aver-
age amount of energy per dislocation core [39].

Eq. (22) for the work of formation for dislocation-
assisted clustering in Al–1.1Cu and Al–1.1Cu–0.2Mg alloys
is plotted in Fig. 10b. This figure shows that for the case of
a strained area around one dislocation (i.e. Rb2

i ¼ 1) the
energy barrier height for clustering of Cu-rich co-clusters
of Cu–Mg of any Mg content is lower than that of the
homogeneous clustering (as depicted in Fig. 10a and b with
barrier heights labelled Bh and Bd for homogeneous and
dislocation-mediated clustering, respectively).

The total work of formation, DGtot, was also com-
puted numerically by measuring the local change in the
grand potential within a box encompassing clusters “a”

and “a0” (i.e. the small boxes marked in Fig. 3d and
h) during their formation and growth in the bulk matrix,
i.e.

DGtot ¼
Z

V
x�

Z
V

xb

¼
Z

V
½ �F � �lcCu � cCu � �lcMg � cMg � �ln � n�

�
Z

V

�F b � �lb
cCu
:cb

Cu � �lb
cMg
� cb

Mg � �lb
n � nb

h i
: ð26Þ

Here, �lcCu ¼ d �F
dcCu

; �lcMg ¼ d �F
dcMg

and �ln ¼ d �F
dn are diffusion

potentials of concentration and density fields, respectively,
and V is the total volume. The total work of formation,
DGtot, has contributions from the surface energy and
driving force for formation of clusters (i.e. D Gtot =
DGc � DGv), both including also the elastic effects. As can
be seen in Fig. 10c, although the descending gradient nat-
ure of the PFC equations of motion reduces the free energy
of the entire system, the total work of formation increases
locally with the growth of clusters to a maximum value and
then decreases. This local trend of the free energy change is
indicative of a post-critical cluster that overcomes the clas-
sical nucleation barrier during the simulation (due to
cumulative strain from dislocations and solutes). The low-
ering of the nucleation barrier is such that small local fluc-
tuations due to numerical noise or solute diffusion due to
random dislocations are enough to initiate the growth of
post-critical clusters. Adding noise self-consistently into
the model would not alter our findings.
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The peak in the total work of formation (plotted in
Fig. 10c) can be explained in such a way that the measuring
boxes contain only one growing cluster, i.e. cluster “a” or
“a0”. Therefore, the calculated change in the grand poten-
tial accounts for structural and compositional changes dur-
ing the formation and growth of the targeted cluster. It
should be noted that while the free energy builds up at
some parts of the system due to the accumulation of dislo-
cations while forming a subcritical cluster, the other parts
of the system may lose energy through annihilation of some
dislocations and/or dissolution of some subcritical clusters.
On average, as suggested by the PFC dissipative dynamics,
the total free energy of the system decreases throughout the
simulation process.

According to our simulation data, typical surviving clus-
ters “a” or “a0” continuously grow in the presence of multi-
ple dislocations until they become stable. This suggests
that, at each subcritical cluster size (i.e. below �30 and
�50 atoms in radius, corresponding to the radius of clus-
ters “a” and “a0”, respectively, at the peak of local free
energy shown in Fig. 10c), the entire system is sitting at a
local energy minimum. Consistent with a previously pro-
posed mechanism [11], straining a subcritical cluster due
to local accumulation of the magnitudes of a collection
of dislocations whose Burgers vectors create a sufficiently
large strain field (i.e. as determined by Rb2

i and illustrated
in Fig. 4b) eventually provides the required local energy
increase for post-critical clusters to emerge (i.e. complete
elimination of the energy barrier). It is thus thermodynam-
ically favorable for the subcritical clusters to accumulate
solute atoms from the matrix and grow in size. However,
since the accumulation of a sufficient number of disloca-
tions into the neighborhood of a cluster is a statistical
occurrence, not all subcritical clusters will be long-lived,
and some of them may even reverse their growth and even-
tually disappear (if not grow beyond the critical size). In
addition to the lack of sufficiently large local strain energy,
classical coarsening also contributes to the disappearance
of some of the subcritical clusters. This is particularly the
case when subcritical and post-critical clusters coexist in
the simulation domain. However, for the case where no sta-
ble cluster forms throughout the simulation due to a low
initial number density of dislocations, the lack of suffi-
ciently large local strains may be considered solely respon-
sible for the dissolution of subcritical clusters.

Past the critical size of the stable cluster, the local free
energy associated with the growing cluster starts to
decrease due to the dominant role of the driving force over
the interfacial energy. The observed peak in the numeri-
cally evaluated total work of formation, DGtot, is consistent
with the estimated energy barriers obtained through analy-
sis of the work of formation for homogeneous and disloca-
tion-assisted clustering (see plots in Fig. 10a and b). One
can easily conclude that addition of Mg to the Al–1.1Cu
alloy reduces energy barrier and the critical size of the sta-
ble cluster, thus leading to a higher clustering rate and a
finer distribution of clusters.
6. Conclusion

In summary, we utilized a ternary extension of the alloy
PFC model of Ref. [13] to simulate and analyze the atom-
istic mechanisms governing the early-stage clustering phe-
nomenon in ternary alloys. Our previous energy analysis
[11] of the dislocation-mediated nucleation and growth
mechanism of clustering in the binary Al–Cu system was
extended to include the effects of adding a ternary element.
Consistent with the existing experiments, we showed that
Mg alloying in the Al–Cu–Mg system refines the final
microstructure.

The detailed analysis of the system energetics for differ-
ent levels of Mg content in quenched/aged Al–Cu–Mg
alloys revealed that the addition of Mg increases the effec-
tive driving force for nucleation (i.e. Df � DGs), decreases
the surface energy, c, and enhances the dislocation stress
relaxation, DGsr, associated with the Cu-rich co-clusters
of Cu–Mg. This in turn ensured a higher rate of nucleation,
thus leading to a finer distribution of clusters, a phenome-
non that was also observed experimentally [16,18]. Further-
more, we showed that the simulation results for the
compositional evolution of the early clusters are in accor-
dance with the previously obtained chemical composition
data through PAS [16,18,20] and 3-D APT [16] analyses.
Through analysis of local free-energy changes in the areas
encompassing the typical stable clusters, we showed that it
is thermodynamically favorable for the small (subcritical)
early clusters to contain more Mg than the larger (post-crit-
ical) Cu-rich clusters. This phenomenon led us to define a
two-stage clustering in Al–Cu–Mg system, comprising an
initial enrichment of the cluster in both Cu and Mg fol-
lowed by attraction of only Cu atoms, leading to a reduc-
tion in the Mg content, while also moving towards the
equilibrium concentrations in both components.

To our knowledge, this is the first ternary PFC model
that elucidates the role of ternary elements in the phenom-
enon of clustering. Through a self-consistent coupling of
the diffusive and elastoplastic effects, our simulations have
shed light on the poorly understood atomistic mechanisms
through which the chemical composition impacts on the
early-stage clustering phenomena in ternary alloys, which
are governed by crystal defects and their elastic interac-
tions. We expect our results to hold qualitatively in three
dimensions. The energy-based methodology presented in
this study will be extended to three dimensions in the future
to include more complex crystal structures and/or chemical
compositions. Finally, while we have investigated the clus-
tering behavior in the presence of dislocations, we expect
that the salient features of the mechanisms proposed in this
work will hold for vacancy-assisted clustering and ageing in
multicomponent alloys.
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