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The phase field crystal (PFC) method is a promising technique for modeling materials with atomic

resolution on mesoscopic time scales. While numerically more efficient than classical density functional

theory (CDFT), its single mode free energy limits the complexity of structural transformations that can be

simulated. We introduce a new PFC model inspired by CDFT, which uses a systematic construction of

two-particle correlation functions that allows for a broad class of structural transformations. Our approach

considers planar spacings, lattice symmetries, planar atomic densities, and atomic vibrational amplitudes

in the unit cell, and parameterizes temperature and anisotropic surface energies. The power of our

approach is demonstrated by two examples of structural phase transformations.
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Solid-state transformations involve structural changes
that couple atomic-scale elastic and plastic effects with
diffusional processes [1–3]. These phenomena are pres-
ently impossible to compute at experimentally relevant
time scales using molecular dynamics simulations. On
the other hand, mesoscale continuum models wash out
most of the relevant atomic-scale physics that leads to
elasticity, plasticity, defect interactions, and grain bound-
ary nucleation and migration. Traditional phase field stud-
ies of precipitate and ledge growth [3,4] thus introduce
these effects phenomenologically. To our knowledge, there
are no phase field models presently available that self-
consistently model polycrystalline interactions and elastic
and plastic effects at the atomic scale.

Classical density function theory (CDFT) provides a
formalism that describes the emergence of crystalline order
from a liquid or solid phase through a coarse-grained
density field [5]. Unfortunately, it requires high spatial
resolution and is inefficient for dynamical calculations
[6] due to sharp density spikes in the solid phases. The
recently introduced phase field crystal (PFC) model has
been gaining widespread recognition as a hybrid method
between CDFT and traditional phase field methods. This
new formalism captures the essential physics of CDFT
without having to resolve the sharp atomic density peaks
[7–11]. Despite their success, existing PFC free energies
allow for only a limited range of structural transformations
between different crystalline states. Moreover, extensions
of the original PFC concept to crystal symmetries such as
square [12,13] and fcc [6,14,15] have been somewhat ad
hoc and not self-consistently connected to material
properties.

This Letter proposes an extension of the PFC model by
systematically constructing phenomenological kernels
with energy minima for targeted crystalline states. Our

approach preserves the PFC model’s numerical efficiency,
and its utility is demonstrated by dynamically simulating
the growth of solid phases into a liquid and the nucleation
of precipitate phases within a parent phase of different
crystallographic symmetry. We begin with a free energy
functional,

�F½nð~rÞ� ¼ �Fid½nð~rÞ� þ�Fex½nð~rÞ�; (1)

where �F is the free energy difference with respect to a
uniform reference density �0 [16], and has contributions
from a noninteracting term �Fid and an excess energy
�Fex responsible for the formation of structured phases.
Equation (1) is expanded around the uniform reference

density using the dimensionless number density nð ~rÞ ¼
�ð~rÞ=�o � 1, where �ð ~rÞ is the coarse-grained local den-
sity. The ideal contribution to the energy is approximated
by expanding the Helmholtz free energy of an ideal gas,

�Fid ¼ �okBT
Z
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The excess energy is expanded to include only second
order correlations [9,16–18],

�Fex ¼ ��okBT

2

Z
d~rnð~rÞ

Z
d~r0½C2ðjr� r0jÞnð~r0Þ�; (3)

where C2ðj ~r� ~r0jÞ plays the role of a two-particle direct
correlation function. The PFC model evolves the di-
mensionless number density field nð~rÞ in time using the

typical conserved dissipative dynamics [7], @nð ~rÞ
@t ¼

Mr2½��F=�nð ~rÞ� þ Anr2� where M is a kinetic mo-
bility parameter and conserved noise � with an amplitude
of An is added to facilitate nucleation from metastable
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states [7,19]. Equation (3) is integrated in reciprocal space
using a semi-implicit technique [8,11].

Periodic structures emerge in the PFC model by the
introduction of the kernel C2ðkÞ that results in free energy
minima corresponding to particular modes in the density
field. Here we do not aim to construct such kernels from
first principles, but rather seek the simplest possible forms
that result in the desired crystal structure. To this end, we
expand the free energy functional about a uniform refer-
ence density [18] and choose modes in the correlation
functions that will create an energy minimum for the
desired structure. The original PFC model by contrast
uses only a single mode [7]. Figure 1 shows two examples
of direct pair correlation functions that produce stable
square (a) and simple cubic (sc) (b) lattices for minimized
free energies. The functions C2ðkÞ are constructed in re-
ciprocal space by combining multiple peaks whose posi-
tion, amplitude, and width are determined as follows:

The number and position of peaks in the reciprocal space
correlation function is determined by the desired unit cell.
In diffraction theory a reciprocal lattice has families of
peaks derived from the interplanar spacings. For a 2D
square lattice, for instance, the unit cell contains two
families of planes, f10g and f11g, with spacings �1 and
�2 as shown in the inset of Fig. 1(a). For a perfect crystal,
there are an infinite number of peaks located at integer

multiples of the wave vector ki ¼ 2�=�i, where i denotes
the plane. For square and cubic lattices, it is sufficient, in
our PFC formalism, to keep only the lowest frequency
mode for each family of these peaks in the correlation
function.
Temperature enters our correlation function via modu-

lation of the peak heights by a factor e��2k2i =2�i�i , where the
effective temperature � acts as a control parameter. The
form of this term is motivated by the effect of thermal
motion of atoms about their equilibrium positions with
amplitude �v, which modulates the scattering intensity

by a Debye-Waller-Factor e��2
vk

2
i =2. The peak heights in

the correlation function are additionally influenced by the
(dimensionless) atomic density �i within a plane and the
number of planes �i in each family. We therefore enter
these effects into the excess energy phenomenologically by

modulating the peaks in C2ðkÞ with a factor exp½� �2k2i
2�i�i

�.
For example, in a square lattice the families of f11g and
f10g planes each consist of 4 sets of planes [i.e., the f11g
family contains (11), (�11), (1�1), and (�1 �1 )] and therefore
�11 ¼ �10 ¼ 4. The (11) plane has an atomic density

�11 ¼ 1=
ffiffiffi
2

p
and the (10) plane has a density of �10 ¼ 1.

Incorporating both the decay of correlation peak heights
through an effective temperature � and the inclusion of
only the lowest frequency peaks of each family of planes in
the excess energy leads to the broad real-space density
peaks that give this model its numerical efficiency.
The peaks in the reciprocal space correlation function

are represented by Gaussians exp½� ðk�kiÞ2
2�2

i

� of finite width
�i rather than the �—peaks of a perfect lattice. The
parameter �i accounts for changes in the free energy due
to interfaces, defects, and strain. Varying �i changes the
width of a liquid-solid interface, which directly affects the
surface energy [20]. The relationship between the interface
width and the peak width in the correlation function is
1=�i / Wi as illustrated in Fig. 2. This result can be arrived
at by the inverse Fourier transform ofC2ðkÞ and agrees well
with the traditional phase field models, which incorporate
surface energy through square gradient terms in the order
parameter.
In summary, each family of planes i in the unit cell

contributes a peak to the kernel in the form of C2ðkÞi ¼
exp½�ð�2k2i Þ=ð2�i�iÞ� expf�½ðk� kiÞ2�=ð2�2

i Þg. To fur-
ther simplify the construction, the correlation functions
in this work (Fig. 1) comprise the numerical envelope of
the superposition of all relevant peaks for the crystal
structure, to avoid shifts in the peak positions and corre-
spondingly changes to the stable structure that would result
from a simple sum. This provides a general and robust
method by which to generate desired crystal structures,
incorporating temperature dependence through modulation
of the correlation peak heights. Through the use of �1 and
�2 we can also change the anisotropy of a given crystal
structure.
The phase diagram is constructed from the free energy

curves obtained for each bulk phase. Free energy curves

FIG. 1 (color online). (a) Direct pair correlation function for a
square lattice at two effective temperatures (� ¼ 0:82, solid and
� ¼ 0:5, dotted, see text). The two peaks in the correlation func-
tion each represent one of two planes in the unit cell with inter-
planar spacings �1 and �2 (see inset). (b) Correlation function
for a simple cubic (sc) lattice at two different temperatures. In
3D, a cubic lattice is represented by three planes in the unit cell.
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are calculated by an iterative relaxation technique for each
structure using the kernel for the structure of interest. For
the liquid state, the energy is calculated by imposing a
constant density field, and the energy per unit volume is
calculated by numerically integrating Eq. (1). For the solid
state, the structures corresponding to the correlation func-
tion are fit using a Gaussian density field and then relaxed.
For example, for the correlation function of Fig. 1(a),
density fields for square and triangular lattices with lattice

spacings of 1 and 2=
ffiffiffi
3

p
are relaxed using the conserved

dynamics to allow density peaks to obtain an amplitude
corresponding to the local minimum energy state. This
process is repeated for a series of mean densities to pro-
duce energy-density curves for each phase at a given
effective temperature � [Fig. 3(b), inset]. The double
tangent construction is performed for many values of �,
giving the phase diagrams in Fig. 3(a) for the square
correlation function and in Fig. 3(b) for the fcc correlation
function.

In both 2D and 3D, the phase that possesses the sym-
metry of the underlying correlation function emerges at
low temperatures and intermediate densities. As the effec-
tive temperature is increased the lower frequency modes of
the correlation function dominate over the higher fre-
quency modes, which changes the particular structure
that minimizes the free energy. For example, the square
(fcc) crystal transforms into a triangular (bcc) crystal since
the triangular (bcc) structure minimizes the energy in the
single mode approximation. Note that our model also
predicts transformation of coexisting liquid and solid
phases into a new single solid phase at a peritectic point
in both two and three dimensions. This remarkable feature
opens an important window into the study of structural

phase transformations. Coexistence between fcc crystals
with the liquid phase is also obtained, as is coexistence of
the liquid and sc phases using the kernel shown in Fig. 1(b).
Our model is applied to two important examples of

solid-state processes using the phase diagram of Fig. 3.
The first is the growth of two structurally different lattices
in coexistence, initialized in rectangular domains, into a
liquid phase as illustrated in the inset of Fig. 3(a). The
square phase is oriented such that the f10g planes are in
contact with the liquid phase. Since each peak in the two-
particle correlation function represents a single family of
planes, the surface energy of the interface of the square
phase {10}-facet is derived from the width �2 of the
second peak of the correlation function, while the surface
energy of triangular phase facets are derived directly from
the width �1 of the first peak. Anisotropy of surface energy
can be controlled by increasing or decreasing �1 while
holding �2 constant. This effect also extends to the solid-
solid surfaces between boundaries of different structure
(for example, triangle-square boundaries). The triangle
structure is derived directly from a single mode approxi-
mation, therefore the magnitude of the anisotropy is deter-

FIG. 2. Effect of peak width �i in the correlation functions on
planar interface width Wi. Left: Three values of �i and their
resulting interface widths. Top right: Peak shapes corresponding
the interface widths to the left. Bottom right: Dependence of
simulated interface width on the correlation peak width (see
text).

FIG. 3. (a) Phase diagram for a square lattice correlation
function showing coexistence between liquid, solid, and trian-
gular phases. The inset contains stripes of square and triangular
lattices in a liquid phase quenched to a temperature � ¼ 0:79.
The square phase density was initialized to nsq ¼ 0:067 and the

triangular phase density to ntri ¼ 0:076. The mean density of the
system is set to �n ¼ 0:07 and the surface energy parameters are
�1 ¼

ffiffiffi
2

p
and �2 ¼ 1. (b) Phase diagram for a fcc correlation

function. The insets show the peritectic point and the energy
curves for the liquid, fcc and bcc states at � ¼ 0:06.
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mined strictly by the underlying structure. Small changes
in the strength of the anisotropy lead to small changes in
the angle of the solid liquid interfaces at vertices between
the three phases.

The second application of interest is the nucleation of a
structural phase by a quench into the second phase region
of the phase diagram. To illustrative this, the simple 2D
case of square-triangle structural transformations is shown
here. A liquid with a homogeneous density field is
quenched into the triangular region of the phase diagram
[point A on the quench path in Fig. 3(a)]. Small amplitude
noise facilitates the nucleation of randomly oriented trian-
gular phase seeds in the liquid phase. These seeds grow,
impinge and coarsen over time. A small grain is illustrated
in Fig. 4(a). After the triangular grains undergo some
coarsening, the material is quenched into the square por-
tion of the phase diagram (point B). A thermodynamic
driving force leads to the nucleation, growth, and coarsen-
ing of the square phase. The nucleation events occur at
vertex positions in the triangular grain structures, as ob-
served in experiments [1]. The driving force for the trans-
formation is greatest at these positions and can overcome
the nucleation barrier. Two such nucleation points are
shown in Fig. 4(b). The orientation of a nucleus and
coherency strains can inhibit the growth of the new phase
that precipitates, eventually to be dominated by another

more favorable precipitate. This effect is illustrated in
panels (c) and (d) of Fig. 4. These results demonstrate
that our approach is capable of modeling the distribution
of square or fcc precipitate orientations, an important
phenomenon that can be compared to experiments.
We introduced new PFC free energy functionals for

efficient numerical study of solid-state transformations.
In contrast to earlier work [13], we find that two-point
correlations are sufficient to generate stable cubic lattices,
and higher order terms in the expansion of�Fex can still be
neglected. The correlation functions are systematically
built up from fundamental principles and desired crystallo-
graphic properties of phases of interest at a finite tempera-
ture. Our approach can model peritectic transitions as well
as the nucleation and growth of second-phase precipitates
with different crystalline structures. Our model can be
validated against numerous experiments, as well as MD
simulations of triple junctions.
This work has been supported by the Natural Science

and Engineering Research Council of Canada (NSERC).
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FIG. 4 (color online). 2D nucleation from triangles to squares
with noise amplitude of An ¼ 0:01 (a) A liquid with density �n ¼
0:09 is quenched into the triangular region of the phase diagram
(� ¼ 0:82), marked (A) in Fig. 3(a), produces grains with
triangular symmetry. (b)–(d) A further quench into the square
portion of the phase diagram (� ¼ 0:6), marked (B) in Fig. 3(a),
illustrating the nucleation and subsequent growth of square
grains at the vertices of the triangular grains.
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