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Abstract

We use a two-dimensional phase-field model coupled to a nucleation mechanism to study the evolution of interdendritic liquid pools
during late-stage solidification of Mg—Al alloys under spatially uniform temperature and constant cooling rates. We obtain the channel
size distribution (CSD) of liquid pools at solid fractions close to those where eutectic phase is expected to form and investigate the influ-
ence of cooling rate on the morphology of the CSD at different solidification stages. Our results show that the CSD is unimodal, exhib-
iting a peak at small channel widths followed by a shoulder and longer decay tail at large channel widths. This feature is correlated to the
presence of two distinct liquid regions, small channels between secondary branches of the primary phase and larger channels between
adjacent grains. We construct a cooling-rate/solid-fraction morphology diagram that shows the relative importance of the shoulder in
the CSD. We characterize the mean and standard deviation of the CSD and show that, within the range of data examined, the mean
channel size vs. cooling rate curves scale with solid fraction. The numerical tools developed for this work can also be used to analyze

experimental results. We include the analysis of two experimental micrographs previously published by Paliwal et al.
© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The as-cast microstructure as well as the spatial distribu-
tion of solutes that develops during the primary phase of
solidification serves as a template for the formation of sec-
ondary phases in metal alloys. There has been extensive
research on microstructure selection of primary phases
during solidification in alloys [I-9] using dynamical
experiments and phase-field simulations. The selection of
secondary phases is typically predicted by applying

* Corresponding author. Present address: Department of Materials
Science and Engineering, University of Michigan, 2300 Hayward St., Ann
Arbor, MI 48109, USA. Tel.: +1 734 478 0551.

E-mail addresses: dmontiel@umich.edu (D. Montiel), sebastian.
gurevich@mcgill.ca (S. Gurevich), nana.ofori-opoku@mail.mcgill.ca
(N. Ofori-Opoku), provatas@physics.mcgill.ca (N. Provatas).

http://dx.doi.org/10.1016/j.actamat.2014.05.063

thermodynamic models of equilibrium phases to the ther-
mosolutal conditions during late-stage solidification
[10,11]. However, to date most such studies usually ignore
the role of complex interface topology and liquid pool con-
finement on the second-phase selection process.
Numerical modeling has become rapid and sophisti-
cated enough to simulate the evolution of very complex
interface topologies during solidification, topologies that
would otherwise be difficult to observe experimentally,
and which can help clarify the mechanisms by which the
final properties of alloy phases emerge. For example, using
multicomponent and multiphase field models [12-14], it is
possible to characterize and measure the distributions of
multiple solutes and correlate them to the morphology of
liquid channels that form between primary phases through-
out the solidification path. By studying interdendritic liquid
pools at the stage at which they become precursors of
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secondary phases, it is thus possible to gain insights into
the final distribution and type of second phases of the
resulting alloy.

In this work we model the liquid pool evolution in the
late stages of solidification of a binary alloy of composition
Mg-10 wt.%Al under conditions of uniform temperature
and constant cooling rate. The aforementioned composi-
tion is chosen due to its similarity to AZ91 Mg alloy, which
is a well-known commercial alloy the properties of which
have been extensively studied [16-19]. Fig. 1 shows two
experimental micrographs of Mg-9 wt.%Al for different
cooling rates: 30 and 75 K s~' [15]. In both cases the micro-
structure consists of a convoluted network of narrow sec-
ond-phase channels between grains of primary phase, a
morphology that is typical of dendritic growth. In order
to characterize such microstructure, we calculate the chan-
nel size distribution (CSD) of the interdendritic liquid
channels at solid fractions close to those at which they
would become precursors of eutectic phase. The mean
channel width, its standard deviation and the structure of
the CSD distribution are examined as a function of
primary solid fraction and cooling rate. Making the rea-
sonable assumption that the transformation of supersatu-
rated liquid pools into eutectic occurs at much shorter
timescales than those that characterize primary phase
evolution,' we may regard the results of this study as defin-
ing a statistical metric for characterizing the distribution of
secondary phases. A future publication will address the
question of how secondary phases emerge from the liquid
during late-stage solidification.

The structure of this paper is as follows. Section 2 intro-
duces the methods we use to simulate the microstructure
and solute concentration dynamics, as well as to obtain
the CSD. In Section 3 we present and discuss our results
regarding the characterization and scaling of interdendritic
liquid pools. Finally, in Section 4 we present our conclu-
sions and an outlook on future work.

2. Methods
2.1. Nucleation algorithm

We coupled our phase-field model solidification process
to a quantitatively accurate model for nucleation in order
to obtain a realistic spatial distribution of grains as well
as the undercooling at which they appear. Our model con-
siders heterogeneous nucleation on inoculant particles as
the sole mechanism of grain inception. We follow the sto-
chastic coarse graining approach of Simmons et al. [20],
already applied successfully in Ref. [21] to a binary alloy.
This approach consists of calculating the probability of
spontaneous nuclei formation within a certain volume
element during a certain time interval. The following

! An argument in support of this hypothesis is presented in the
discussion of Fig. 4 in Section 3.2.

Fig. 1. Optical micrographs of Mg-9 wt.%Al under cooling rates (a)
30K s ! and (b) 75 K s~!. Reprinted from [15] with permission.

expression yields the probability p, that at least one solid
nucleus of critical size forms within a homogeneous volume
element AV during a time interval Az

py = 1 —exp(—JAV A1), (1)

where J is the nucleation rate which depends on the local
conditions of the metastable liquid, the physical properties
of the material, and the nature and concentration of inoc-
ulant particles. The coupling of nucleation to phase-field
dynamics that simulate dendritic growth is described in
more detail in Ref. [21].

2.2. Phase-field model

We use a phase-field model to simulate growth after
nucleation of equiaxed grains of Mg-10 wt.%Al. This
model is a modified version of the quantitative phase-field
model for dilute binary alloys described in detail in Ref.
[22], and further extended for general two-phase polycrys-
talline binary alloys [23] by Ofori-Opoku et al. [24]. Our
model includes thermal noise to promote sidebranching.
Details on the inclusion of thermal noise in the model
can be found in Refs. [7,25]. We also include non-
vanishing, temperature-dependent solute diffusivity in the
solid which is responsible for back-diffusion. For the range
of temperatures considered, the solute diffusivity varies
within two orders of magnitude. The evolution of solidify-
ing domains of primary phase is found by numerical
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integration in time of a set of coupled differential equations
for solute concentration and order parameter fields. Each
order parameter field represents the state (solid or liquid)
of a different crystallographic orientation. The model is
coupled to the adaptive mesh refinement algorithm
[26,27], which allows for a significant improvement in com-
putational efficiency compared to fixed-mesh methods.

2.3. Microstructure analysis

At any given time during the solidification process, the
CSD of the liquid domains can be calculated from a global
solid-liquid order parameter. For this purpose, we employ
a method similar to the one developed in Ref. [28], in which
the liquid channels are identified and measured via topolog-
ical changes of isodistance structures to solid-liquid inter-
faces. We apply a simpler version of the method for two
dimensions with the important difference that we take into
account the distribution of all widths within a channel
and not only at bottleneck points. This method can be
described as follows. First, a global order parameter field
¢(r) that combines the order parameters of all crystallo-
graphic orientations is obtained [24], ranging from —1 (in
the liquid) to 1 (in the solid). The values of this field are then
interpolated onto a uniform mesh with the smallest grid
spacing of the adaptive mesh used for the phase-field simu-
lation. A subsequent interpolation step is performed to
obtain a mesh with one further level of refinement. This
allows a more precise measurement of small channels on
the order of the interface width. The global order parameter
is mapped onto a discrete bilevel data set with values 1/2 in
the solid, —1/2 in the liquid and discontinuous at the inter-
faces. Then, using the set level method described in Ref. [28]
a signed distance function field d(r) is calculated. The func-
tion d(r) has the same sign as the global order parameter
(except at the interface, where it is zero) and its magnitude
represents the Euclidian distance from each point to the
nearest interface. The signed distance function is smoothed
with a three-point boxcar-averaging method. It follows,
from the definition of d(r), that its value at each point along
a line that goes through the middle of a channel is a measure
of half the channel width. We can identify the line that runs
along the middle of a channel as the set of points for which
Vd is discontinuous. Moreover, the distance function must
satisfy the condition |Vd| =1 elsewhere. Thus, once the dis-
tance function is found, the location of the mid-channel
lines can be obtained by calculating Vd using a simple cen-
tral difference scheme and identifying the grid points for
which |Vd| < 9, where J is a threshold value less than unity.
We found that the value 6 = 0.9 works well. Fig. 2 shows
two examples in which the mid-channel locations have been
found and marked. They correspond to simulation domains
formed at a cooling rate of 80 K s~!, when the solid fraction
reaches 0.85 (a) or 0.55 (b). Note that this method is only
applicable when channel-like structures (i.e., thin, elongated
liquid pools) are prevalent, which is only the case at high
solid fractions. Thus, the CSD calculation loses accuracy
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Fig. 2. Mid-channel lines along liquid (white) channels. Obtained from

simulation domains formed at a cooling rate of 80 K s™!, and at solid

fractions (a) 0.85 and (b) 0.55.

for low solid fractions, where large liquid regions are pres-
ent between grains. Fig. 2b shows an example of a margin-
ally low solid fraction. We set this to be the lowest solid
fraction considered in our analysis. Finally, by sampling
d(r) along all mid-channel points in the liquid, the CSD is
obtained via an appropriate binning scheme.

3. Results and discussion
3.1. Parameters examined

We performed 2-D simulations of dendritic growth of
solid o phase of an Mg-10 wt.%Al alloy from its under-
cooled melt under uniform temperature and cooled at a
constant rate (Q) from the liquidus temperature. We chose
a system size of 520 pm x 520 um for all simulations. The
material, process and model parameters are reported in
Table 1. To simulate heterogeneous nucleation we seeded
the liquid with a uniformly random inoculant density of
9 x 107> um~2 within the initial liquid phase. For simplic-
ity, we assign each grain that nucleates to one of five
predetermined orientation values.

Five cooling rates were studied: 10, 50, 80, 100 and
125K s~!. Beyond this range, interface kinetics begin to
dominate the sharp-interface description of the phase-field
equations. We sampled the order parameter and solute
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Table 1
Physical properties of Mg—10 wt.%Al, phase-field and nucleation param-
eters used in the simulations.

Physical properties of Mg—10 wt.%Al alloy

Chemical composition (wt.%) Al: 10, Mg: 90
Melting point of Mg (°C) 650

Liquidus slope (°C wt.% 1) —6.454
Partition coefficient 0.364

Eutectic temperature (°C) 437

Solute diffusivity (liquid; m* s~") 1.8x107°
Solute diffusivity (solid): Dy = Ae«/(RT)

Prefactor, A (m2 s’l) 3.9 x 1073
Activation energy, E, (J mol™") 1.55 x 10°
Gibbs-Thomson coefficient (K m) 6.2x 1077
Density (kg m~3)* 1740
Solid-liquid interfacial energy (J m~2) 0.115
Specific heat (J kg~' K™ 1)* 1360
Specific heat of fusion (J kg™!)* 3.7 x 10°

Thermal conductivity (W m~! K~1)? 78

Thermal diffusivity (m?s™!)* 3.73 x 1073
Phase-field simulation parameters

Effective interface width, W, (m) 4x1077
Minimum grid spacing 0.781 W,
Anti-trapping coefficient 1/(2v2)
Nucleation parameters

Zeldovich factor, Z 0.1
Characteristic frequency, § (s 102

* Values for pure Mg.

concentration at intervals of 2 K in temperature drop. For
each cooling rate, an ensemble of 20 runs with identical
solidification conditions but different random initialization
conditions was produced. Thus, all simulations of a given
cooling rate and at a given time exhibit the same statistical
features but different specific grain positions and orienta-
tions. Using the method described in Section 2.3, we calcu-
lated the CSD of samples from each ensemble of each
cooling rate, at five different solid fractions: 0.55, 0.65,
0.75, 0.85 and 0.9. The CSD for each set of conditions
was averaged over the ensemble runs of each cooling rate.
The methods developed for this work can also be applied to
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analyze microstructures obtained in experiments by setting
a threshold to the color map range of an image to distin-
guish between phases. In this way, we obtain the CSDs
of the two experimental micrographs shown in Fig. 1,
which correspond to an alloy with similar composition to
the one we use in our simulations. From these CSDs we
extract the mean channel size and standard deviation,
and compare the results to those from our simulations.

To estimate the solid fraction at which eutectic phase is
expected to appear, we calculated the dependency of solid
fraction on undercooling. Fig. 3a shows this dependency
for each cooling rate, where each curve is obtained by
ensemble-averaging the solid fraction data at each underco-
oling. As a reference, we also obtained the solid fraction
dependence with undercooling under Scheil solidification,
which corresponds to the limiting case Q — 0 and no solute
diffusion in the solid. As Fig. 3b shows, the solid fraction ¢*
corresponding to when the eutectic undercooling AT is
reached does not depend strongly on cooling rate and is
close to 0.85 for all values within our range of study.

3.2. Liquid pool concentration

Fig. 4a shows the evolution of the average solute con-
centration in the liquid (C;) as temperature drops from
the liquidus point to below T for all cooling rates. In all
cases, the liquid composition deviates from its equilibrium
value only at early stages; whereas at late stages, and well
before T is reached, C; follows the liquidus line (L). This
behavior suggests that once free growth ends and the coars-
ening stage sets in, the composition in the liquid is uniform
and back-diffusion to the solid effectively shuts down due
to the temperature dependence of the diffusion coefficient.
This is further confirmed by Fig. 4b, showing the evolution
with undercooling of the standard deviation around the
average of the liquid composition (g. = ((C; —C_L)2>1/2)
which is a measure of the spacial inhomogeneity of the
solute in the liquid. The spacial uniformity of liquid
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Fig. 3. (a) Ensemble-averaged solid fraction ¢ vs. temperature undercooling AT for all cooling rates. The undercooling corresponding to the eutectic
temperature is AT = 148.5K. (b) Solid fraction ¢* for which eutectic undercooling is reached vs. cooling rate. The Scheil (reference) value is

¢;‘chei! = 0.848.
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Fig. 4. (a) Evolution of the average solute composition in the liquid (C;) with temperature for all cooling rates. The symbols L and S represent,
respectively, the liquidus and solidus lines of the dilute limit Mg-Al phase diagram. (b) Standard deviation (o.) around the average of the liquid

composition vs. temperature undercooling AT for all cooling rates.

composition below T, along with the assumption of uni-
form temperature throughout the system implies that the
driving force for eutectic formation is also uniform. This,
in turn, reinforces the hypothesis that the formation of
eutectic phase is almost instantaneous throughout the sam-
ple relative to the evolution of primary phase and, there-
fore, that the late-stage distribution of liquid domains is
preserved (or “fossilized”) by secondary phases (e.g. eutec-
tics and intermetallics) that emerge from the liquid at late
stages of solidification.

3.3. Evolution of channel size distribution
Fig. 5 shows typical microstructure maps and corre-
sponding CSDs for two cooling rates (10 and 100 K s~ 1)

at two solid fractions (0.65 and 0.85). We define the chan-
nel size d., as half of its width. As expected, the average

Q (K/s)

100

10 A

liquid channel size decreases with solid fraction, while for
a given solid fraction, higher cooling rates result in a larger
proportion of narrower channels due to enhanced side-
branching. The latter effect also lowers the mean channel
size of the sample. In Fig. 5, we note that the distributions
corresponding to a solid fraction of 0.65 feature a peak at
low values of d, that is relatively sharper than the rest of
the distribution. This peak, along with an adjacent shoul-
der, are features of the distributions present at the lower
solid fractions in our analysis. The appearance of the peak
is correlated to the length scale of liquid channels between
secondary branches that is, on average, smaller than the
length scale of liquid channels between different grains.
We can therefore interpret the peak and shoulder charac-
teristics as the result of two partial contributions that arise
from different features: a broad distribution from the liquid
channels between grains, and a sharper distribution (the

0.85 ¢

Fig. 5. Phase-field order parameter maps of the solidification microstructure and their corresponding CSDs for cooling rates Q=100 K s™! and
0 =10K s7! at solid fractions ¢ = 0.65 and ¢ = 0.85, respectively. All distances are in units of W,.
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peak) from the narrower channels between secondary
branches. When the shoulder is more pronounced, there
is a larger difference in breadth between these partial distri-
butions. For the values of Q and ¢ considered, it was found
that the shoulder is less prominent at larger solid fractions,
which is consistent with the fact that the observed channels
between secondary branches and those between grains are
comparable in size. Although not as important as solid
fraction, cooling rate also has an effect, with higher cooling
rates leading to slightly more prominent peaks.

We found that a convenient parameter to quantify the
predominance of a peak and shoulder feature in the CSD
is the excess kurtosis, defined as y, = p,/0o* — 3, where
is the fourth moment around the mean and ¢ is the standard
deviation. A CSD featuring a prominent peak followed by a
shoulder has a smaller kurtosis, while a simple peak without
a shoulder yields a higher kurtosis. Fig. 6 shows a morpho-
logical state diagram that maps the prominence of the

D. Montiel et al. | Acta Materialia 77 (2014) 183—190

shoulder in the CSD for the values of Q and ¢ examined
in this study. As the diagram indicates, the “peak-shoulder”
feature appears predominantly in CSDs corresponding to
solid fractions below 0.85.

3.4. Channel size scaling

Useful quantitative information about the CSD can be
found through its moments. Fig. 7 shows the mean channel
size u and standard deviation ¢ of each distribution as a
function of cooling rate for every solid fraction. The values
of u and o extracted from the CSD of the two experimental
micrographs in Fig. 1 are also shown. The reported solid
fraction was calculated as the relative area of the light gray
domains with respect to the total area.

As expected from the above discussion, both the mean
and standard deviation of the channel size decrease with
solid fraction, reflecting that liquid channels become

125| |}

100 . .
g 80 .
C 5 | N

0.4

0.2
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Fig. 6. Cooling rate—solid fraction diagram mapping the kurtosis of the CSD, which measures the prominence of a shoulder in the CSD. Low kurtosis
(blue) indicates a prominent peak followed by a shoulder in the CSD, while high kurtosis (red) indicates a simple peak in the CSD. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Mean channel size p (a) and standard deviation ¢ (b) as a function of cooling rate for different solid fractions. The length of the error bars equals
one standard deviation around the ensemble-averaged values. Points labeled E1 and E2 correspond to the values extracted from the experimental

micrographs at cooling rates 30 and 75 K s™, respectively.
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Fig. 8. (a) Mean channel size vs. cooling rate curves collapsed via the transformation given by Eq. (2). Plots of x, (b) and « (c) vs. solid fraction with their
respective linear fits (solid lines). Points labeled E1 and E2 correspond, respectively, to the values of ji calculated for the experimental micrographs at

cooling rates 30 and 75 K s~ .

narrower and more uniform in width as solidification pro-
gresses. The plots also show a decrease in mean channel
size with increasing cooling rate. This is consistent with
increased sidebranching at higher cooling rates, which
increases the tortuosity of the microstructure and, thus,
the total length of liquid channels. The standard deviation
shows the same qualitative behavior except for the curve at
the lowest solid fraction (0.55) which does not decrease
monotonically with cooling rate. We believe this could be
an artifact of the method we use to compute channel
widths which, as discussed in Section 2.3, is less accurate
for low solid fractions.

It was found that the mean channel size curves of Fig. 7a
can be collapsed into a single master curve u that depends
only on cooling rate via the following scaling relation:

_ 1(Q,¢) — mo(9)

() ’
where (1, is a vertical offset given by the last value of every
curve, i.e. the value of u corresponding to the highest cool-
ing rate. The parameter o is a scaling factor. Both y, and o
depend only on the solid fraction and we found this depen-
dence to be approximately linear in both cases. Fig. 8a
shows the curves from Fig. 7a collapsed via the scaling rela-
tion in Eq. (2). The same scaling transformation was
applied to the values of u obtained from the experimental
samples. Fig. 8b and ¢ show the respective dependence of
U, and o on solid fraction for all values of ¢ considered,
along with the linear regression fits for each. It is notewor-
thy that for the fits of both u, and a, the intercept and slope
values are close to each other and, in the case of «, almost
identical. This implies that the mean channel size scales
approximately with liquid fraction, ¢, =1 — ¢, and that
¢, is a more suitable scaling variable than ¢. Thus, we
can rewrite Eq. (2) as:

(0) (2)

WO, bp) = f(O)b +c, (3)

where ¢ is a constant offset and f(Q) is a function of cool-
ing rate only. Substitution of the fitting parameters for p,
and o yields f(Q) = 2.8u(Q) + 12.32 and ¢ = 1.58. Note
that ¢ being close to unity implies that it is of the order
of the solid-liquid interface width, W, which is the small-
est physically meaningful feature that can be resolved in the
simulations.

4. Conclusions

This work used phase-field simulations to characterize
the evolution of the CSD of interdendritic liquid pools dur-
ing late-stage solidification. The CSD function was shown
to be able to unambiguously distinguish two underlying
length scales of liquid pool microstructure: one corre-
sponding to the length scale of channels between secondary
branches, and the other to liquid channels between grains.
The “signature” of the first length scale manifests itself in a
sharp peak at small length scales of the CSD, while the
emergence of larger length scales is accompanied by a
long-decay tail in the CSD.

From the CSD we were also able to calculate the mean
channel size and standard deviation. It was found that the
mean channel size dependence with cooling rate scales with
the liquid fraction of the system. Specifically, the average
channel size dependence on cooling rate and liquid fraction
can be decoupled as the product of the liquid fraction and a
scaling curve which depends only on cooling rate.

We computed the CSD, the mean channel size and its
standard deviation from optical micrographs of experimen-
tal castings of a Mg-9 wt.%Al alloy at two cooling rates
comparable to those of our simulations. The scaled mean
channel size was found to lie approximately on the master
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curve for the 30 K s™! sample. We believe the discrepancy
observed for the high cooling rate (75 K s~') sample may
be, at least in part, due to the limited resolution of the
micrograph, which does not allow an accurate measure-
ment of narrow channels. The same argument could
explain the discrepancy between the calculated and
expected values of the standard deviation. However, a
quantitative comparison to experimental results should in
principle be possible provided that samples at sufficiently
high resolution are available. We also expect a discrepancy
due to the 3-D nature of the experimental samples vs. the
2-D nature of our simulations. An upcoming work in
3-D, as well as new experiments, are underway to further
investigate this discrepancy.

Since secondary phases appear on relatively short time
scales compared to the primary solidification process, the
structure of liquid channels at the late stages of solidifica-
tion essentially forms the template from which eutectic
and intermetallic phases will be patterned. In light of these
assumptions, the findings of this study suggest the possibil-
ity of a universal descriptor of second-phase size distribu-
tion that depends only on cooling rate and which scales
in a simple way with primary solid fraction at the time of
second-phase formation.

The ubiquitous dendritic patterning we see in our simu-
lations of binary alloys is also known to be present in mul-
ticomponent alloys. It is thus plausible that the concept of
a characteristic CSD is also applicable to more complex
alloys. However, the interdiffusion between different com-
ponents is likely to have a more complex effect on the chan-
nel size and distribution. The CSD and its structure for
multicomponent alloys will be the subject of an upcoming

paper.
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