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some finite range of control parameter near threshold.
Sometimes, particularly in systems with roll type symme-
try, the parameters must be chosen quite delicately to
yield a stable stationary structure. On the other hand the
Taylor-vortex roll structure is found to survive into the
strongly chaotic regime, with remarkably clear del-
ineation of the large-scale rolls in a fluid which is strong-
ly chaotic on the small scales. Also we have suggested
that, as in equilibrium systems, cellular structures are
more robust than striped ones.

Thus, at the laboratory scale we find that the existence
of spontaneously broken continuous symmetries, and the
relevance of this idea to experimental phenomena (i.e.
“Broken Symmetry,” not just ‘“‘broken symmetry”’ in the
language of Anderson, 1981), can be considered to be es-
tablished.

This conclusion does not address the larger question of
whether these structures appearing from nowhere in a
dissipative system are an appropriate first step in model-
ing more exotic (and more interesting!) phenomena such
as the emergence of life from the primordial soup. As we
have tried to make clear in this review there is no evi-
dence for the existence of any global minimization princi-
ples controlling the structure, except as a perturbative
statement near threshold. Such a principle would make
it easier to generalize from the small scale phenomena of
the laboratory (in the sense of number of unit blocks) to
the large-scale phenomena of biological complexity. As a
modest contribution to the debate we have reviewed tools
and ideas which may be relevant to the building blocks of
such phenomena. It seems plausible to us (although by
no means demonstrated) that reaction-diffusion type
mechanisms, perhaps augmented with other phenomena
such as forces and flows, may provide a mechanism for
communicating information encoded at the molecular
level up to the cellular level. It is encouraging to note
that parameters set by molecular scales can lead natural-
ly to macroscopic length scales, through energy barriers
appearing in exponential activation expressions that are
large for large molecules. As in many branches of phys-
ics, however, it is simply not clear how many conceptual
leaps are involved in putting together these building
blocks to make the full satisfying edifice.
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APPENDIX A. DERIVATION
OF THE AMPLITUDE EQUATION

1. The Swift-Hohenberg equation

We first illustrate the multiple scales approach used to
derive amplitude equations on a particularly simple ex-
ample where the answer can almost be guessed without
calculation. We consider the Swift-Hohenberg model
(3.27) in two dimensions,

d,u=eu—(V*+qg3Pu—u’, (A1)

where for clarity we introduce the scale g, in the original
equation. Near the bifurcation, i.e. for || <<1, we wish
to separate fast and slow scales for x and ¢. We therefore
define

X=¢2x, Y=¢"%, T=et, (A2)

anticipating the anisotropic scaling for roll systems in
Eq. (4.3). We will consider u(x,?) to be a product of
functions of fast and slow variables. From the chain rule
for differentiation we therefore must make the replace-
ments

3,—d,+e'?dy, 3,—d,+e%dy, 3, —0,+edr,
(A3)

etc., where on the right-hand side 9,, d,, and , now only
act on the rapid dependences. The differential operator
in Eq. (A1) becomes

(V2+g3)—0% +26'7%0,0y +ed5 +e'23+¢3 , (A4
where we assume no rapid y dependence, i.e. we are ex-

panding about a roll state with wave vector along x. Let
us now set

u=euy+eu,+e*%u, , (A5)

and insert (A4) and (A5) into Eq. (A1). Collecting orders
of €12 we find

(A6a)
(A6b)

(A6c)



M. C. Cross and P. C. Hohenberg: Pattern formation outside of equilibrium 1081

The first two equations are solved by setting

ug(x,0)= Ao(X,Y,T) e " +c.c. , (A7a)

u(x,0)=A4,(X,Y,T)e " +c.c. , (A7b)
since Eq. (A7a) implies

(32 +¢3)uy=0, (A8)

so that the rhs of Eq. (A6b) vanishes identically. The last
equation (A6c), has a nontrivial rhs so the linear operator
on the left must be inverted. Since this operator has van-
ishing eigenvalues we must impose a solvability condition,
requiring that the vector on the right should not drive
any eigenvector with zero eigenvalue (Stakgold, 1979).
The simplest example of such a condition occurs for a
matrix equation

MV=aG . (A9)

Let C, be an eigenvector of the adjoint 1}! with zero ei-

genvalue. Then clearly

(Co, MV)=(M'Cy, V)=(C,, G)=0, (A10)
i.e. G is orthogonal to Cy. The Fredholm theorem states
that Eq. (A10) is also a sufficient condition, i.e. Eq. (A9)
has a solution for V if and only if G is orthogonal to all
zero eigenvectors of M This theorem also holds if M is

replaced by a differential operator.
For Eq. (A6c) the operator

Lo=(3:+g})? (A11)
J

gl/2: (a§+q%)2u0=0 ,

e:  (3+gp u;=—43,0y(8; +qf)ug —uodsu,

e (3 + g2 u,=—43,0,5(82+q2)u,

—[37—1 + 4923% +20% (82 +q2) ug—

These equations are solved by setting

uo(u,t)=AO(X,T)eiq°x+c.c. , (A19a)

uy(x,0)= A,(X,T) e +B,(X,T)e" " +c.c., (Al9b)

Uy, )= A, (X, T) e +By+B, e " + By " +c.c.
(A19c)

The function B,(X,T) can be calculated by setting the
coefficient of exp(2igyx ) in Eq. (A18b) to zero, yielding

B,=—i(9g3)" 1 43 . (A20)

With these choices Egs. (A19a) and (A19b) are satisfied
identically, and Eq. (A19c) once again requires a solvabil-
ity condition, which is obtained by setting the coefficient
of exp(igyx ) on the rhs to zero. The result is
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is self-adjoint and its zero eigenvectors are exp(= igyx ).
The Fredholm theorem thus requires that the coefficients
of these terms on the rhs of Eq. (A6c) should vanish iden-
tically, i.e. A, should satisfy the solvability condition

[0, —1+3| 4,12+ (2igydx +0%)*] 40=0.  (Al2)
Returning to unscaled units

A(x,t)=¢'? 4y(X,Y,T) , (A13)
we have the general amplitude equation (4.3)
700, A =€ A +E5[0,—(i/29¢)d3]* 4 —gol A]*4 , (A14)
with

To=1, £3=4q3, g,=3. (A15)

[The value of g, depends on the arbitrary normalization
in Eq. (A7a).]

2. The Kuramoto-Sivashinsky equation

Let us consider the damped KS model (3.31) in one di-
mension

Qu=—nu—02u—0otu—ud.u, (A16)
which we rewrite as
du=eu—(32+q3)Yu—udu, (A17)

with e=1/4—m, g3=1/2. The equations corresponding
to (A6) are
(A18a)
(A18Db)
U0, U —u 0, Uy — Uyl - (A18c)
[
[0;—1—4g33%+(9¢3) 1] 44]?] 40=0, (A21)

which leads to the general amplitude equation (A 14) with
e=1/4—n, 1,=1, E=49%=2, g,=(9¢%)"'=2/9.
(A22)

3. Rayleigh-Bénard convection

A much more involved calculation is necessary to
derive the amplitude equation (A14) from the hydro-
dynamic equations (8.3) for Rayleigh-Bénard convection.
We will once again use the method of multiple-scales per-
turbation theory. An alternative approach, perhaps
more familiar to physicists, is the mode expansion or pro-





