
README - Adaptive Mesh Equaixed
Growth

General:
This folder contains source files for a phase-field model that can be used for
equiaxed solidification. The model is based on that developed by Ofori-Opoku
and Provatas [1] with the nucleation algorithm that was developed by Montiel
et al. [2]. The model itself is solved using an adaptive mesh refinement (AMR)
algorithm architecture which uses a finite difference scheme where an OpenMP
parallel method has also been employed. Details of this particular design of the
AMR algorithm can be found in the thesis of Greenwood [3]. This read-me text
will serve as a guide to the general operation of the code and enough knowledge
one can use to make some superficial changes to either the model being solved,
outputting of data or including functions. Any interested user who would like
to delve deeper into the understanding and operation, and perhaps make some
non - trivial or superficial changes will require more assistance than what is
contained here.

Compiling and running the code is simple. A one line script or on the com-
mand line will do, just be mindful to include an OpenMP flag. Something like
g++ -fopenmp *cpp -O3 -o equixTest will suffice in generating the executable
file name equixTest.

Flow of Algorithm:
The two most important files for someone who just wants to run this code is
likely the main source file main.cpp and the header file . initial.h. The gen-
eral flow of the program can be found in the main.cpp source file, while the
bulk of the simulation variables, e.g. material parameters (melting tempera-
ture, partition coefficient, etc), model parameter (cooling rate, nucleation rate,
number of nuclei, convergence parameters, etc), mesh size, ∆x, ∆t, etc., can be
found in the header file initial.h. Currently the model’s materials parameters
are set to those of a Mg-Al binary alloy system where the solute is Al. When
you wish to change the material characteristics, it should be a simple matter of
going to the initial.h and making appropriate changes.

Following the general flow of the program, we first have some declaration and
initialization, mostly surrounding nucleation arrays and initialization arrays for
initial grain setup. After this, the mesh is initialized with what ever the initial
conditions happen to be, which may be to setup some grains in an undercooled
liquid or with just a liquid and await nucleation. After this block of code, the

1



2

time integration starts, which includes also the adaption processes, nucleation
block and finally data output. One will know upon inspection that every func-
tion that is called from main.cpp is connected to the object AdaptiveGrid,
defined and contained in the source file grid.cpp and it’s corresponding header
file. One can think of this as basically the workhorse of the code or more aptly
the Solver Side, i.e, where the fields of interest are solved and updated, of this
algorithm. If the objects and information contained in grid.cpp is the solver
side, then it is safe to say that almost everything else belongs to the “brains”,
i.e., logic of the meshing algorithm. We can call this the Adaptor Side. I advise
that you take some time and look generally over the entirety of the code to gain
some familiarity, however, for all intent and purposes, unless you understand
the algorithm and c++ coding well, I would avoid making any serious changes
on the Adaptor Side of this code. Besides, as far as the actual modifications
and functions, your focus should be on the functions in grid.cpp. Which is
what I will discuss in next.

Meshing and Model Functions:
The adaption/re-adaption process is contained in the first part of the code in the
time integration loop in the main.cpp file. The process calls three functions,
of the grid, namely, updateGrid, setdx and createArray.

AdaptiveGrid→updateGrid
This function call copies all necessary field values (phase-field, tempera-
ture, or concentration), i.e., order-parameter fields, from the solver side of
the algorithm over to to adaptor side. After the fields are copied over, the
mesh undergoes a re-griding, i.e., a readapting, process based on the cur-
rent state of the system. Predominantly, the readaption process uses gra-
dients of the fields to determine where new nodes and elements should be
placed. After the readaption, the new size of the number of nodes/ghosts
is also calculated.

AdaptiveGrid→setdx
After the elements and nodes are created, some have increased in size,
while others have decreased in size. The current layout, in terms of the
size, i.e., ∆x, of the new system is set.

AdaptiveGrid→createArray
This is the final step in the adaption process, where the new sets of fields
values, coordinates, and ∆x values are copied from the adaption side to the
solver size to resume the updating scheme until the next time the adaption
process is invoked. Once these have been copied back, this function is also
responsible for reassembling the boundary relationships between the new
nodes.

The next set of code encountered is the nucleation block. The nucleation
process is similar to that of the adaption process. In order for the system to
nucleate a phase on the mesh, the current fields values and structure of the mesh



3

need to be known. The following is the sequence of functions, neglecting those
ones that have already been discussed.

AdaptiveGrid→temperature
Calculates the current temperature profile in the system. For isothermal
runs, this would just be the current temperature in the domain based on
the structure of the mesh and the current time step and cooling rate.

AdaptiveGrid→findNucSites
Using classical nucleation theory, this function uses Boltzmann statistics
to calculate the probability of a nucleation event (only a single event per
query of the system is allowed) at some point in the domain. If it’s proba-
ble then this function will return the site coordinates, nucleus concentra-
tion and the nucleus radius.

AdaptiveGrid→nucleate
Once the nucleation parameters have been determined, this function will
then place the nucleus in the domain.

Next in the sequence of the code are the functions which calculate the different
parts of the model. In this part of the code, the calculation of each portion of
the model’s equations of motion follow a pattern. First, buffer and boundary
node values are calculated, then some field, its derivatives or a function of the
filed is then calculated. The functions responsible for the boundaries and buffers
are AdaptiveGrid→updateGhosts and AdaptiveGrid→updateBC. We now review
these and each function where parts of the model are calculated.

AdaptiveGrid→updateGhosts
As described in the thesis of Greenwood, not all the nodes in the domain
are “real”. Since the algorithm works by dividing the domain into smaller
elements, sometimes when some of the nodes needed may fall in another
element. This is where Ghost nodes come into play. This function will
updates the Ghost nodes of the appropriate function using the surrounding
information from other nodes.

AdaptiveGrid→updateBC
This function updates the boundary conditions applied to the domain. In
this code that could either be zero flux or periodic. This is called often
since some functions depend on other functions or fields.

AdaptiveGrid→calcprePhi
Given the equation of motion for the order parameter, this function calcu-
lates several of the functions, and derivatives of the order parameter that
are needed for the numerical update. This particular function calculates
things like gradients, anisotropy fields, diffusion interpolation functions,
etc.

AdaptiveGrid→calcdPdt
Calculates the time rate of change of the order parameter (∂tφ), using the
driving forces, gradients and interaction terms.



4

AdaptiveGrid→calcUnoise
Thermal fluctuations are active in the equation of motion for the concen-
tration field. This function determines those terms and their relation and
behaviour.

AdaptiveGrid→calcpreC
For the update of the concentration equation, several functions need to
be calculated beforehand. Things to do with the anti-trapping flux for
example, gradients in the

AdaptiveGrid→calcdCdt
The time rate of chanhe, ∂tc, is calculated in this function using those
functions calculated calculated in the previous function.

Data Output and Visualization:
From time to time, something set by the user, the simulation will output to a
file the current values of each of the fields. The typical name of the data file is
“aaa100.dat”, if for example the current status of the system at 100 time steps
were outputted. The function that does this is AdaptiveGrid→output, from the
source file grid.cpp. The data is in a single file in columns, where the value in
each column corresponds to x, y, φ(x, y), c(x, y) respectively.

Inevitably one may wish to visualize the data. There’s been a python script
included, plotad.py (written by Sebastian Gurevich), that will read each data
file from the output and generate png images that correspond to the order
parameter, concentration and nature of the adaptive grid structure for each
time step sequence. Once the script has been executed, it asks for several pieces
of information in order to generate the images. The first is the file name, in
the example above “aaa”, then the first time step, last time step and increment
between time steps. Next come the dimensions of the domain you wish to
image, xinitial, xfinal and npointsx. Where if the whole domain is to be imaged
xinitial = 0, xfinal = nx ∗ size (from initial.h, and npointsx is the number of
points used in the interpolation of the data, usually 1000 suffices but bare in
mind that anything larger and it will take longer for the image to be generated.
Analogously for the y-dimension as well.

References

[1] Nana Ofori-Opoku and Nikolas Provatas. A quantitative multi-phase field
model of polycrystalline alloy solidification. Acta Materialia, 58(6):2155 –
2164, 2010.

[2] D. Montiel, L. Liu, L. Xiao, Y. Zhou, and N. Provatas. Microstructure
analysis of {AZ31} magnesium alloy welds using phase-field models. Acta
Materialia, 60(16):5925 – 5932, 2012.

[3] Michael Greenwood. Ph.D. Thesis. McMaster University, 2008.


