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Preface

The idea for this book grew out of a series of workshops that took place at McMaster University from
2002-2005 in which a couple of dozen researchers and students (coined the ” Canadian Network for Com-
putational Materials Science, CNCMS”) were invited to discuss their research and their visions for the
future of computational materials science. One serious concern that surfaced through discussions and the
meetings’ proceedings regarded the gaping hole that existed in the standard pedagogical literature for
teaching students —and professors— about computational and theoretical methods in phase field modeling.
Indeed, unlike many other fields of applied physics and theoretical materials science, there is a dearth
of easy-to-read books on phase field modeling that would allow students to come up to speed with the
details of this topic in a short period of time. After sitting on the fence for a while we decided to add
our contribution by writing an introductory text about phase field modeling.

The aim of this book is to provide a graduate level introduction of phase field modeling for students
in materials science who wish to delve deeper into the underlying physics of the theory. The book begins
with the basic principles of condensed matter physics to motivate and develop the phase field method.
This methodology is then used to model various classes of non-equilibrium phase transformations that
serve as paradigms of microstructure development in materials science phenomena. The workings of
the various phase field models studied are presented in sufficient detail for students to be able to follow
the reasoning and reproduce all calculations. The book also includes some basic numerical algorithms
—accompanied by corresponding Fortran codes on the Wiley website for this book— that students can use
as templates with which to practice and develop their own phase field codes. A basic undergraduate level
knowledge of statistical thermodynamics and phase transformations is assumed throughout this book.
Most long-winded mathematical derivations and numerical details that can serve as references but would
otherwise detract from the flow of the main theme of the text are relegated to appendices.

It should be specified at the outset that this book is not intended to be an exhaustive survey of all
the work conducted throughout the years with phase field modeling. There are plenty of reviews that
cover this angle and many of these works are cited herein. Instead, we focus on what we feel is missing
from much of the literature: a fast-track to understanding some of the "dirty” details of deriving and
analyzing various phase field models, and their numerical implementation. That is precisely what we
have observed new students wishing to study phase field modeling are starving for as they get started in
their research. As such, this book is intended to be a kind of ”phase field modeling for dummies”, and so
while the number of topics is limited, as many of the details as possible are shown for those topics that
are covered.

The broad organization of the material in following chapters is as follows. The first half of the book
begins by establishing the basic phase field phenomenology, from it basic origins in mean field theory of
phase transformations, to its basic form now in common use as the base of most modern phase field models
used in computational materials science and engineering. Phase field theory is applied to several examples,



with a special emphasis placed on the paradigms of solidification and solid state transformations. An
appendix is also dedicated to the important issue of mapping the phase field model onto specific sharp
interface limits. The Last two chapters of this book deal with the development of more complex class
of phase field models coined ”phase field crystal” models. These are are an extension of the original
phase field formalism that makes it possible to incorporate elastic and plastic effects along side the usual
kinetics that governing phase transformations. We will see that these models constitute a hybrid between
traditional phase field theory and atomistic dynamics. After motivating the derivation of phase field
crystal models from classical density functional theory, these models are then applied to various types
of phase transformation phenomena that inherently involve elastic and plastic effects. It is noted that
some sections of the book are marked as “Optional”. These are sections that can be skipped at first
reading without loosing the main flow of the text and without detracting from the minimum path of
topics comprising the basic principles of phase field theory.

Writing this book involved the valued help of many people. We would like to thank all the graduate
students in the department of materials science and engineering at McMaster University who took MATLS
791 in the Fall of 2009. Their help and advice in editing and proofing the first edition of the manuscript
of this book was greatly appreciated. We also appreciate the cooperation of various authors that allowed
us to reference their work in some of the figures of this book (the green dendrite on the cover is from
[W.L. George and J.A. Warren, J. Comput. Phys. 177, 264-283 (2002)]). I (NP) would like to thank
my wife Photini and Sons Spiro and Aristotle for their love and patience during the writing of this book;
doing science for a living is fun but their love is what living is actually about. I also suppose thanks
are in order to Starbucks Coffee for providing me —at the cost of lots of over-priced bitter coffee- many
hours of escape from the mundane administrative environment of a modern university in order that I can
work on this book in peace and talk politics with other patrons. I would also like to thank the Technical
Research Centre of Finland (VTT) and Helsinki University of Technology for hosting me during my
sabbatical leave in 2009 and for flipping the bill for some of my travels to Helsinki where I also worked
on this manuscript and other cool stuff. T (KE) would like to thank my wife Nancy, daughter Kate and
parents Fay and Stan for the tremendous support they have given me over many years and throughout
the writing of this text. In addition I would like to thank Tapio Ala-Nissila and the Helsinki University
of Technology (now Aalto University)for providing me the opportunity to give several short courses on
phase field and phase field crystal modelling. Some of the material developed for those courses has found
its way into the text.

As with anything in print, this book very likely contains typos and oversights. We would be de-
lighted to hear from readers about any such errors or omissions. Please do not hesitate to contact us at
provatas@physics.mcgill.ca or elder@oakland.edu.
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Chapter 1

Introduction

1.1 The Role of Microstructure Materials Science

The properties of most engineered materials involve a connection to their underlying microstructure. For
example, the crystal structure and impurity content of silicon will determine its band structure and its
subsequent quality of performance in modern electronics. Most large-scale civil engineering applications
demand high strength steels containing a mix of refined crystal grains and a dispersion of hard and
soft phases throughout their microstructure. For aerospace and automotive applications, where weight
to strength ratios are a paramount issue, lighter alloys are strengthened by precipitating second-phase
particles within the original grain structure. The combination of brain boundaries, precipitated particles
and the combination of soft and hard regions allow metals to be very hard and still have room for ductile
deformation. It is notable that the lengthening of span bridges in the world can be directly linked to the
development of perlitic steels. In general, the technological advance of societies has often been linked to
their ability to exploit and engineer new materials and their properties.

In most of the above examples, as well as a plethora of untold others, microstructures are developed
during the process of solidification, solid state precipitation and thermo-mechanical processing. All these
processes are governed by the fundamental physics of free boundary dynamics and non-equilibrium phase
transformation kinetics. For example, in solidification and re-crystallization —both of which serve as a
paradigms of a first order transformation— nucleation of crystal grains is followed by a competitive growth
of these grains under the drive to reduce the overall free energy —bulk and surface— of the system, limited,
however, in their kinetics by the diffusion of heat and mass. Thermodynamic driving forces can vary.
For example, solidification is driven by bulk free energy minimization, surface energy and anisotropy.
On the other hand, strain induced transformation, must also incorporate elastic effects. These can have
profound effects on the morphologies and distribution of, for example, second phase precipitates during
a heat treatment of an alloy.

The ability to model and predict materials properties and microstructure has greatly benefited from
the recent “explosion” of new theoretical and numerical tools. Modern parallel computing now allows
several billions atoms to be simulated for times on the scale of nanoseconds. On higher scales, various
continuum and sharp interface methods have made it possible to quantitatively model free surface ki-
netics responsible for microstructure formation. Each of these methodologies, however, comes with its
advantages and deficiencies.



1.2 Free Boundary Problems and Microstructure Evolution

Solidification has typically served as a paradigm for many classes of non-equilibrium phase transformations
which govern the formation of complex microstructure during materials processign. The most commonly
recognized solidification microstructure is the tree-like dendrite patters (which comes from the Greek
word for tree, "dendron”). The most popular example of a dendrite is a snowflake, which is a single
crystal of ice, which was solidified from water that falls through the sky. Figure (1.1) shows an image of
a brach of a snowflake in an organic material known an succinonitrile (SCN) solidifying from its melt.
This material is a favorite with researchers because it solidifies at room temperature and is transparent,
affording us a good look at the solidification process. It is also often referred to as a “metal analogue” as
it solidifies into a cubic crystal structure. Surprisingly the properties learned from this organic material
are essentially unchanged qualitatively in metals and their alloys. Patterns like the one in Fig. (1.1)

Figure 1.1: A snowflake of succinonitrile (SCN), an organic compound that solidified at room temperature.
The image shows the characteristic ”dendritic” tree-like pattern of the crystal, typical of crystal formation
in nearly all anisotropic solids. It is a ubiquitous shape depends on the physics of reaction-diffusion and
the properties of the surface energy between the solid and liquid. (Vincent Proton, Summer Intern,
McMaster University (2008).)

are not limited to solidification. They are also emerge are also found in the solid state transformations.
Figure (1.2) shows dendrite patters that emerge when one solid phase emerges from and grows within
another. The business of microstructure modeling involves understanding the physics governing such
microstructure formation.

Solidification is at the heart of all metal casting technologies. Figure (1.3) shows a typical layout for
casting slabs of steel used in many industries. The basic idea is that a liquid metal alloy enters a region
like the one between the rollers in the figure. There the liquid is sprayed with water, which establishes a
cooling mechanism that extracts heat from the casting at some rate (Q) The liquid solidifies from the
outer surface inward. The rate at which heat is extracted —i.e. the cooling rate— is key in establishing
the morphology and scale of the solidification microstructure, as seen in the inset of Fig. (1.3). Typical
dendrite microstructures in many steel alloys resemble those shown in Fig. (1.4). In this situation the

2



0.2 um

Figure 1.2: Left: solid state dendrites in an alloy of Copper (Cu) and Zinc (Zn). Right: Dendrite in a
Nickel-based super-alloy, a material commonly used in aerospace materials due to its very high strength.
Reprinted from [220] (left) and [101] (right)
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Figure 1.3: Typical industrial layout for thin slab casting. Liquid is enters from top, is cooled by splashing
water and is directed —as it solidifis— at some speed (V') to the right. Most steels will then be cut and
thermo-mechanically treated to improve their strength properties. In spite of the post solidification
treatment that the metal may receive, the so called ”as-cast” structure (inset) that is established initially
is always, to some extend, present in the final product.



Dendrites

Increasing cooling rate

Figure 1.4: Dendrite arrays in a steel alloy. Growth is from bottom left to top right in the left figure and
from left to right in the right figure. The figure on the right has been cooled much more rapidly than
that of the left. The main striations are known as primary dendrites. The budding branch-like structures
coming off of the primary dendrites are known as secondary arms or side-branches.

competitive growth and interaction of a very large number of dendrites means that only partial traces of
the traditional snow flake pattern survive. In fact, depending on the direction of heat extraction, cooling
rate and geometry of the cast, it is typical that only single ”arms” of the characteristic snow flake pattern
survive and grow. These form the branch-like striations in the figure.

The kinetics of microstructure formation can often -as in conventional solidification processes- mod-
elled assuming the interface in atomically sharp compared to any other dimension in the problem. Prac-
tically, this leads to a set of mathematical relations that describe the release and diffusion of heat, the
transport of impurities and the complex boundary conditions that govern the thermodynamics at the
interface. These mathematical relations in theory contain the physics that gives rise to the complex
structure shown in the above figures. As a concrete example, in the solidification of a pure material the
advance of the solidification front is limited by the diffusion of latent heat away from the solid-liquid in-
terface, and the ability of the interface to maintain two specific boundary conditions; flux of heat toward
one side of the interface is balanced by an equivalent flux away from the other side and the temperature at
the interface undergoes a curvature correction known as the Gibb’s Thomson condition. These conditions
are expressed mathematically as in the following sharp-interface model commonly known as the Stefan
Problem:

oT v. (iw> =V (aVT)

ot PCp
pLiVa = kVT il — kL VT il
T = Tu— (374) e 22 11
t T (L)

where: T = T(&#,t) denotes temperature, k thermal conductivity (which assumes values ks and kr, in
the solid and liquid, respectively), p the density of the solid and liquid, ¢, the specific heat at constant
pressure, « the thermal diffusion coefficient, L; the latent heat of fusion per mass for solidification,
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the solid-liquid surface energy, Ty, the melting temperature, x the local solid-liquid interface curvature,
V., the local normal velocity of the interface, u the local atomic interface mobility. Finally, the subscript
7int” refers to interface and the superscript ”s” and ”L” refer to evaluation at the interface on the solid
or liquid side, respectively.

Like solidification, there are other diffusion limited phase transformations whose interface properties
can, on large enough length scales, be described by specific sharp interface kinetics. Most of them can
be described by sharp interface equations analogous to those in Egs. (1.1). Such models —often referred
to as sharp interface models— operate on scales much larger than the solid-liquid interface width, itself of
atomic dimensions. As a result, they incorporate all information from the atomic scale through effective
constants such as the capillary length, which depend on surface energy, the kinetic attachment coefficient
and thermal of impurity diffusion coefficient.

1.3 Continuum Versus Sharp-Interface Descriptions

A limitation encountered in modeling free boundary problems is that the appropriate sharp interface
model is often not known for many classes of phenomena. For example, the sharp interface model for
phase separation or particle coarsening, while easy to formulate nominally, is unknown for the case
when mobile dislocations and their effect of domain coarsening is included [154]. A similar situation is
encountered in the description of rapid solidification when solute trapping and drag are relevant. There
are several different sharp interface descriptions of this phenomenon, each differing in the way they treat
the phenomenological drag parameters and trapping coefficients and lateral diffusion along the interface.

Another difficulty associated with sharp interface models is that their numerical simulation of sharp
interface models also turns out to be extremely difficult. The most challenging aspect is the complex
interactions between topologically complex interfaces that undergo merging and pinch-off during the
course of a phase transformation. Such situations are often addressed by applying somewhat arbitrary
criteria for describing when interface merging or pinch-off occurs, and manually adjusting the interface
topology. It is noteworthy that numerical codes for sharp interface models are very lengthy and complex,
particularly in 3D.

A relatively new modeling paradigm on the scene of materials science and engineering is the so-called
phase field method. The technique has found increasing use by the materials community because of its
fundamental origins and because it avoids some of the problems associated with sharp interface models.
The phase field method introduces, along side the usual temperature field, an additional continuum field
coined the phase field or order parameter. This field assumes constant values in the bulk of each phase,
continuously interpolating between its bulk values across a thin boundary layer, which is used to describe
the interface between phases. From the perspective of condensed matter physics, the phase field may be
seen as describing the degree of crystallinity or atomic order or disorder in a phase. It can also be viewed
as providing a fundamental description of an atomically diffuse interface. As a mathematical tool, the
phase field can be seen as a tool that allows the interface to be smeared over a diffuse region for numerical
expedience.

Traditional phase field models are connected to thermodynamics by a phenomenological free energy
functional ! written in terms of the phase field and other fields (temperature, concentration, strain, etc).

1A “functional” is a function whose input is an entire function rather than a single number. As a one dimensional
example, suppose a quantity f is dependent on a certain function of space ¢(z). The quantify F = ff (¢(z)) dz is then
dependent on entire function ¢(x) and is said to be a functional of ¢(x). The functional dependence of F on ¢(z) will be
denoted by F[¢(z)]



Through a dissipative minimization of this free energy, the dynamics of one or more order parameter, as
well as those of heat or mass transfer are governed by set of no non-linear partial differential equations.
Parameters of these dynamical equations of motion are tuned by association of the model —in the limit
of a very small interface— with the associated sharp interface equations.

As will be explored in this book, phase field models, besides their fundamental thermodynamic con-
nection are exceedingly simple to program. They often do not require much more than a simple so-called
Euler time marching algorithm on a uniform mesh (these will be examined later). For the more advanced
users, more sophisticated techniques such as adaptive mesh refinement (AMR) and other rapid simulation
schemes are also in abundance for free download and use these days.

The phase field methodology has become ubiquitous as of late and is gaining popularity as a method
of choice to model complex microstructures in solidification, precipitation and strain-induced transfor-
mations. More recently a new class of phase field models has also emerged, coined phase field crystal
models, which incorporate atomic scale elasticity alongside the usual phase transformation kinetics of
traditional phase field models. Phase field crystal models are appealing as they will be shown to arise
as special instances of classical density functional theory. This connection of phase field crystal models
and classical density functional theory provides insight about the derivation of the effective constants
appearing in phase field models from atomistic properties.

Of course there are no free lunches! While phase field models might offer a deeper connection to
fundamental thermodynamics than larger-scale engineering or sharp interface models, they come with
several severe problems that have traditionally stood in the way of making models amenable to quantita-
tive modeling of experimentally relevant situations. For example, the emergence of a mesoscopic interface
renders phase field equations very stiff. This requires multi-scale numerical methods to resolve both the
thin interfaces that are inherent in phase field models while at the same time capturing microstructures on
millimeter-centimeter scales. Moreover, the numerical time steps inherent in phase field theory —limited
by the interface kinetics— makes it impossible to model realistic time scale. As a result new mathematical
techniques —thin-interface asymptotic analysis methods— have to be developed that make it possible to
accelerate numerical time scales without compromising solution quality. Luckily advances on both these
fronts —and others— have recently become possible to overcome some of these challenges in selected prob-
lems. Understanding some of these methods and their application to the broader phase field methodology
will be one of the main focuses of the chapters that follow.



Chapter 2

Mean Field Theory of Phase
Transformations

The origins of the phase field methodology -the focus of this book- have been considerably influenced by
mean field theory of first and second order phase transformations. It is thus instructive to begin first
with a discussion of some simple phase transformations and their description via mean field theory. Using
this as a framework will better alloy the concept of an order parameter to be defined and generalized to
include spatial variations. This will thus set the stage for the later development of phase field models
of solidification and solid state transformation phenomena. Before proceeding, the reader should have a
basic background of statistical thermodynamics. For a quick review of, the reader is referred to one of
[20], [96], Ref. [43].

Common first order transformations include solidification of liquids and condensation of vapor. They
are defined by a release of latent heat and discontinuous first derivative of the free energy. Moreover,
just below a first order transformation, nucleation of the meta-stable phase is required to initiate the
transformation. Finally, in first order transformations, two phases can typically co-exist over a wide
range of temperatures, densities (pure materials) or impurity concentrations (alloys). In contrast, second
order transformations occur at well defined temperature, density or concentration. There is no release
of latent heat and the transformation begins spontaneously due to thermal fluctuations. A paradigm
example is phase separation of a binary mixture or spinodal decomposition in metal alloys. Another is
the spontaneous ferromagnetic magnetization of iron below its Currie temperature.

An important concept that is used again and again in the description of phase transformations is that
of the order parameter. This is a quantity that parameterizes the change of symmetry from the parent
(disordered) phase to the daughter (ordered) phase appearing after the transformation. For example,
a crystal phase has fewer rotational and translational symmetries compared to a liquid. The order
parameter typically takes on a finite value in the ordered state and vanishes in the disordered state. First
and second order phase transitions are distinguished by the way the order parameter appears below the
transition temperature. In a first order transformation, the order parameter of the ordered state emerges
discontinuously from that of the disordered phase, below the transformation temperature. In second order
transformation, the disordered state gives way continuously to two ordered phases with non-zero order
parameter. Another example of a change of symmetry characterized by changes in the order parameter
include the average magnetization. For some phase changes, like vapour — vapour + liquid, there is no
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change in the structural symmetry groups of the parent and daughter phases. In such case effective order
parameters can often be defined in terms of density differences relative to the parent phase.

Mean field theory of phase transformations ignores spatial fluctuations, which always exist due to local
molecular motion. The order parameter —treated as an average thermodynamic property of a phase— is
used to write the free energy of a system. Its subsequent thermodynamic properties can thus be deter-
mined. This approach works reasonably well in first order transformations, where fluctuations influence
only regions near nano-scale phase boundaries, even near the transition temperature. In contrast, second
order transformations fluctuations influence ordering over increasing length scales, particularly near a
critical point. For such problems, spatial fluctuations play a dominant role and mean field Landau free
energy functional must be augmented with terms describing spatial fluctuations. These are also written
in terms of gradients of the order parameter, which is in this case considered to be varying spatially on
scales over which spatial fluctuations occur.

This chapter begins by illustrating two phenomenological microscopic models that help motivate and
define the concept of an order parameter and mean field treatments of phase transformations.

2.1 Simple Lattice Models

2.1.1 Phase separation in a binary mixture

Consider a binary mixture of two components A and B. Imagine the domain on which the mixture is
broken into many small discrete volume elements labeled with the index i. Each element contains either
one A or one B atom. The total number of cells M equals the total number of atoms N, a definition valid
for an incompressible fluid mixture. For each cell 1 < i < N, a state variable n; is defined, which takes on
n; = 0 if a volume elements is occupied by an A atom and n; = 1 when it is occupied by a B atom. The
variable n; thus measures the local concentration of B atoms in each cell. The total number of unique
states of the system is given by 2V, where each configurational state is denoted by the notation {n;}.
Assuming that each particle interacts with v of its neighbors, the total interaction energy of a particular
configuration of the binary mixture is given by

N v
E[{n;}] =— ZZ{eAA(l —n;)(1 —n;j) +eap(l —ny)n; +eap(l —nj)n; + egpnin,;} (2.1)

i=1 j=1

This expression can be simplified by interchanging the ¢ and j subscripts and noting that n;n; = n; —
n;(1 —n;), which gives

Blfni] = €S m(1 =)+ ni - N”;AA (2.2)

i=1 j=1

where € = €44 + €gp — 2¢4p and b = %(GAA - EBB).
The thermodynamics of this simple system is described by the grand potential [20]

Q(u, N, T) = F(N,(Ng),T) — p < Np > (2.3)

where p is the chemical potential of the system and
N
< Np>= (> n) (2.4)
i=1
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is the average concentration of B particles. The free energy per particle can be expressed as

F(¢,N,T) Q(u,N,T)

= S (2.5)
where ¢ is the order parameter, defined by
1 X
¢ = N<Z n;) =< n; > (2.6)

i=1

Equation (2.5) makes explicit the dependencies of the free energy density on the chemical potential and
the order parameter of the system, which in this case is the average concentration of B atoms.

From the principles of statistical mechanics, the free energy f in Equation (2.5) can be connected
to the interaction energy in Eq. (2.1) via the grand partition function =, which determines the grand
potential Q according to

Q=—kgTIh= (2.7)

where kg is the Boltzmann constant and

(1]

N
_ H e~ B(E[{ni}]-pNg) (2.8)
=1 ni:O,l

where 8 =1/kpT and Np = vazl n;. Equation (2.8) represents a configurational sum of the Boltzmann
factor over all 2V configurations of the binary mixture. The order parameter in Eq. (2.6) can be evaluated
directly from the grand partition function Eq. (2.8), or from Eq. (2.5), according to

L ‘99‘
N Oulnr

The configurational sum in Eq. (2.8) cannot be performed for most complex interacting systems
including the simple binary mixture model presented here. Nevertheless, a considerable insight into the
thermodynamics of this lattice model can be gleaned from making some simplification on the interaction
terms. Namely, we invoke mean field approximation, which assumes that the argument of the Boltzmann
factor in the configurational sum of = can be replaced by its mean or equilibrium value. The implication
of this assumption is that the main contribution to = comes from particle configurations close to those
that minimize the argument of the Boltzmann factor in Z. Thus, in mean field theory the partition
function becomes,

¢ = (2.9)

(1]
%

IJ_VI Z e~ B(E[{n:}]) +pB{Nz)

=1 TLrL':O,l

N!
— —B(E[{ni}]) +nB(Ng)
(NpY(N — (Np))!© (2.10)

Accordingly, the grand potential in mean field theory becomes

Q = —kpThE

—kpTn (<NB>!(NN1 <NB>)!> + (E[{n:}]) — u(Ng) (2.11)

Q
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Figure 2.1: Mean field free energy of ideal binary alloy for temperatures ranging from above to below the
critical temperature.

where Sterling’s approximation was used above. The mean energy E[{n;}] per particle can be written as

(Eln}]) _ 5y N
= N;;wu—wwgn»— .
VEAA

€v
= ol 9)+bo- (2.12)
This expression makes it possible to finally write the mean field free energy density f in Eq. (2.5) for the
binary mixture in terms of the order parameter as

eV VEAA

f=G00—0)+bo-

+kpT{$lng+ (1— ¢)In(l - 6)} (2.13)

Figure (2.1) shows the free energy in Eq. (2.13) for several temperatures above and below the critical
value below which one stable state of concentration continuously gives way to two. It is assumed in this
figure that e4q = epp and v = 4, i.e. the alloy is two dimensional. The free energy well in the figure
correspond to free energies of individual phases. Since impurity concentration (i.e. number of B atoms)
is conserved, the order parameter in this problem is referred to as conserved. It will be seen that this
designation has important implications about the type of dynamical equations that can be written for
the spatial evolution of ¢ (or other conserved order parameters).
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Since the order parameter represents a concentration —a conserved quantity— we can can apply the
standard Maxwell equal area construction [181, 133] to calculate the stable or equilibrium states of con-
centration the system can take below the critical temperature (i.e. the phase diagram). This construction
leads to the so-called ”common tangent construction”, in which one graphically connects the free energy
wells of any two phases by a common tangent line. The points where this tangent intersects the free en-
ergy wells determine the equilibrium concentrations, ¢eq, of the co-existing alloy phases. The slope of the
line corresponds to the equilibrium chemical potential of the system, also expressed as peq = 0f /99| Goq"
From the simple form of the free energy curves in Fig. (2.1) the equilibrium chemical potential can be
seen to satisfy peq = 0. Thus, the equilibrium concentrations ¢.q are found by solving

_or

pea = G| =0 (2.14)

deq

Substituting Eq. (2.13) into Eq. (2.14) gives the transcendental equation

1 1 1
(beq — 5 = 5 tanh (2]€€ZT (Cbeq - 2)) (215)

Solutions of Eq. (2.15) exist only for T' < T, = ev/4kp, which defines the critical temperature for this
alloy. This form of the free energy is such that below a critical temperature two states emerge continuously
from one. This means that at a temperature arbitrarily close to (and below) T, the two stable states ¢eq
are arbitrarily close to the value ¢.q = 0 above T,. This type of behaviour is typical of a second order
phase transformation.

2.1.2 Ising Model of Magnetism

A second microscopic system that can described in terms of a well defined order parameter is a collection
of magnetic spins in an external magnetic field. Consider a domain of atoms, each of which carries a
magnetic spin s; = +1, i.e. the atoms’ magnetic moment points up or down. The energy of this system

of spins is given by
N v N
E{si}=->_ > Jsisj—B> s (2.16)
i=1

i=1 j=1

where v represents the nearest neightbours of each spin. The first term of Eq. (2.16) sums up the
interaction energies of each spin (”i”) with all other spins (”j”). The second term adds the energy of
interaction of each spin with an externally imposed magnetic field. In this system the order parameter is
defined as

1
¢ = N<Zsi> = (s;) (2.17)
i=1
which represents the average magnetization of the system. Unlike the case of the binary alloy where the

average concentration of B atoms relative to the total number of atoms in the system was conserved !
the average magnetization is not a conserved quantity.

1Note that the use in the binary alloy example of the grand canonical ensemble, where particle number varies, was done
for convenience. We would have obtained the same results if we used the canonical ensemble where particle number remains
fixed.
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The statistical thermodynamics of this system can be considered via the canonical partition function
for an N-spin system (since the number of spins is assumed not to change), given by

Q-] 3 erm 21

i=1s;,=—1,1

One of the primary premises of statistical mechanics is that the partition function can be used to calculate

the free energy per spin, according to
kgT
f= —ian (2.19)

From Egs. (2.18) and (2.19) the order parameter defined by Eq. (2.17) can be evaluated as

¢ = QH > ( Z@) (Y T )

i=1s=-1,1
0[5 mQ]
0B

_ _of
= -5 (2.20)

Considering first the order parameter of the system for the simple case where the interaction strength
J = 0, i.e. where the spins do not interact. This situation describes the case of a paramagnet, which
occurs at high temperatures. In this case,

0 - I ¥ rEL

i=1s;,=-—1,1

_ ﬁ <2653 —i—e_'BB)
N 2

=1
= [2cosh (BB)]N (2.21)

Substituting Eq. (2.21) into Eq. (2.19) gives

;o= -2ime

bt (e (12)] 4102) o

Substituting Eq. (2.22) into the definition of the order parameter Eq. (2.20) gives,

__of _ B
¢ = —5 = tanh ( kBT) (2.23)

The order parameter defined by Eq. (2.23) is shown in Fig. (2.2). Not surprisingly, it follows the sign of
the external magnetic field B, since there are no spin-spin interactions.

The more complex case when spins are allowed to interact leads to ferromagnetism below a critical
temperature T,. This phenomenon can occur in the absence of an external magnetic field. To study this
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Figure 2.2: The order parameter of a paramagnetic system, in which the spins are assumed to interact
with an external magnetic field but not with each other.

phenomenon, it is necessary to consider, once again, a mean field approximation, since evaluating the
partition function Eq. (2.18) with J # 0 is not possible analytically. The mean field approximation in
this case requires that we make the following replacement in the interaction energy in Eq. (2.16),

N N N v N
ZZJsisj — ZZJsi<sj> :VJd)Zsi (2.24)
i=1

i=1 j=1 i=1 j=1

This corresponds to replacing the interaction of each spin (i) with all of its neighbours (j) by the inter-
action of each spin (i) with the mean field magnetization arising from v neighbours. Doing so allows us
to write the partition function as

N Y .
Q = 675(7Bzi:1 Si—Jvey ., Si)

= [2cosh (B{B + Jug})V (2.25)

which yields, after application of Eq. (2.20),

B+J
¢ = tanh (ZBTWb) (2.26)

The transcendental Eq. (2.26) admits solutions even when B = 0, which corresponds to the case of
spontaneous magnetization. Specifically, ¢ = 0 for T' > T, = vJ/kp, since the identity line y = ¢ will
not intersect the function y = tanh(Jv/kpT) anywhere than ¢ = 0 (assuming here B = 0). Expanding
the hyperbolic tangent to third order gives an approximate solution of the order parameter (i.e. the
magnetization) at the minima of the mean field free energy,

¢~ £[3(1 - T/T)V*(T/T.), T <T. (2.27)

The non-zero equilibrium magnetization states of Eq. (2.27) below T, go continuously to ¢ = 0, the
temperature state, as the critical temperature is approached, which implies a second order phase transition
at T, when B = 0.
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It is interesting to substitute Eq. (2.25) into Eq. (2.19) and expand the result to fourth order in ¢.
This yields

f(T) 1/ Jvp\° 1 [Jvp\!
- @5 \r) Tlnr) (2:28)
Equation (2.28) is subtracted from the reference free energy of the disordered state just above the critical
temperature,
F(T) L(Jve\’
~—In(2)— = 2.2
kT, 22 =3 (2.29)
Close to T, the free energy difference Af = f(T) — f(T.") becomes
Af(T) T 1(T Jud\? 1 [ Jvp\*!
=1—=|In(2 - =-1 — 2.30
kn T 7 )@+ % inT,) 12 \pT. ) (2.30)

It is straightforward to check that Eq. (2.30) indeed has one minimum state ¢ = 0 for ' = T, and two
(Eq. (2.27)) for T' < T.. Such a polynomial expansion of the fee energy in terms of the order parameter
¢ is an example of Landau free energy functional, which is the focus of the following section.

2.2 Introduction to Landau Theory

2.2.1 Order parameters and phase transformations

Traditional thermodynamics uses bulk variable such as pressure, volume, average density, internal energy,
etc to describe the state of a system during phase transformations. Condensed phases often also display
changes in positional and or rotational order during a phase transition. In the examples previously
considered, for instance, the second order phase changes represented a change in magnetic order or
sub-lattice ordering of impurity atoms (i.e. concentration).

Ordered phases are often distinguished from disordered phases by a decreased number of geometric
symmetries. For example, a liquid or gas is disordered in the sense that they are symmetric with respect
to all rotations and translations in space. A solid however, is only symmetric with respect to a limited
number of rotations or translations in space. In a ferro-magnet, the disordered phase are symmetric with
respect to all rotations and translations, while the ordered phases are not. The Landau theory of phase
transformations treats the order parameter (denoted ¢ in the previous examples of this chapter) as a
state variable, used to distinguish between ordered and disordered phases. It is customary to define the
disordered state as ¢ = 0 while the ordered states satisfy ¢ # 0.

Some transformations occur between states that exhibit the same geometric symmetries. An example
is a liquid gas transition, or a transition such as the binary alloy considered above, where only the sub-
lattice concentrations change in the solid but not the geometrical state of the phases. In such cases it
may still be possible to define an order parameter in terms of other thermodynamic variables relevant to
the phase transformation. For example, the change of order in a liquid-gas transition can be described
using the density difference between the two phases. This definition can, for example, makes it possible
to maintain the definition of the ”disordered” phase (i.e. that above the critical point) as ¢ = 0.

When a disordered state gives rise to an ordered state that exhibits less symmetries than the Hamil-
tonian of the system, this is referred to as a broken symmetry. In plain English, what this means loosely
speaking is that the Hamiltonian, which exhibits a certain number of symmetries can, mathematically,
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give rise to phases (states) that exhibit an equal number of symmetries above some temperature and
phases that exhibit fewer symmetries below that temperature.

The order parameter ¢ of a phase can be interpreted as a non-zero average of a local order parameter
field ®(7), which exhibits spatial variation. The ”bulk” order parameter of the form discussed in the above
examples can thus be thought of as the spatial average of the local order parameter, i.e. ¢ =< ®(7) >,
averaged over the phase. Throughout a system undergoing a phase transformation, significant spatial
variations of ®(7) occur on a length scale often characterized by a so-called correlation length, denoted
here by £. The correlation length sets the scale over which the order changes from one phase to another.
In solidification, for example, ¢ is the distance comparable to the solid-liquid interface. The correlation
length is assumed to be many times larger than the lattice constant of a solid but small enough to be
able to describe the spatial variations characterizing a particular pattern of a system during a phase
transformation.

The above discussion suggests that it is possible to characterize the state of a system in terms of
the configurations of ®(7), since each state of the system corresponds to a state of ®(7). As a result,
if it is possible to parameterize a quantity locally in terms of ®(7), its thermodynamic value can be in
principle calculated in terms of configurational sums over the states of the order parameter field ®(7).
Phase coexistence is then described by a bulk free energy whose minimization gives the possible values
of the mean order parameter ¢ =< ®(7) > in each phase. This topic will be examined in this chapter.

The order of a phase transformation can be linked to the possible values of the average order parameter
¢ can take. For example, a continuous change from ¢ = 0 above a certain critical temperature (7.) to
multiple values of ¢ # 0 below a T, denotes a second order transformation. Other signatures of a second
order transformation include a jump in the 2"?¢ derivatives of usual thermodynamic potentials and a
spontaneous change of phase not requiring nucleation and not accompanied by a release of latent heat.
Also, second order transformations typically preserve the geometrical symmetries between disordered and
ordered phases.

A discontinuous change in the possible states of ¢ is the hallmark of a 1%% order phase transition.
Discontinuous change in ¢ means that ¢ = 0 above a transition temperature T}, 2 gives rise to a discrete
jump in ¢ below T;,, the magnitude of which does not go to zero continuously at T" — T,,. Other
signatures of a first order transformation include a jump in the first derivatives of thermodynamic poten-
tials. First order transformations that occur between phase of the same symmetry usually terminate at
a critical point, where a second order transformation occurs. First order transformations between phases
of different geometrical symmetries (the more common cases in most materials) do not terminate at a
critical point.

2.2.2 The Landau free energy functional

An elegant approach to illustrate Landau mean field theory, which is followed here to motivate the
beginning of this section, is that used in Ref. [20]. This begins by re-grouping the configurational sum
in the partition function into realizations of the order parameter that yield a specific spatial average
< ®(7) >= ¢. Doing so, a generalized partition function is defined by

QT = /_Oo dp Q(p) e 1F(O) =BV (2.31)

2Note that this is not referred as a ”critical” temperature for first order transformations
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where Q(¢) in Eq. (2.31) is the density of states (i.e. configurations) of the system corresponding to
¢ (for simplicity only the simple case of a scalar order parameter field will be considered). The order
parameter is now assumed to be defined via a volume average, where V' is the volume of the system. The
variable B plays the role of an ordering field in terms of which the order parameter can be defined from
the partition function. It is an external magnetic field in the case of an Ising ferromagnet, while in the
case of a binary alloy B is the chemical potential. The probability density of a system having an order
parameter ¢ is
1

P(g) = WT)E{F”’)*BW} (2.32)

where F(¢) = E(¢) — TS(¢) is called the Landau free energy. Here S(¢) = kpIn (Q(¢)) and E(¢) is
the internal energy of the system. For a conserved order parameter, when B corresponds to a chemical
potential, the Landau free energy corresponds to the Gibbs free energy. When the order parameter is
coupled to an external field via B, the Gibbs free energy is given by F(¢) = F(qﬁ) — BV ¢. As discussed

previously, the Gibbs free energy density (or the grand potential density w) of the system is connected
to the generalized partition function by

k:BT

f=—2mQ) (2.33)
Equations (2.32) and (2.33) can be used to compute order parameter ¢ according to
_ o[ mQ(T)]  of
o= / OP(¢)dp = —— 5  — 3B (2.34)

The premise of Landau theory is to evaluate the partition function in Eq. (2.32) around the extremum
of the Boltzmann factor. This leads to the well-known extremum conditions

86¢ (F(¢>—BV¢>)L - 0
;;(F(gb)Bng)‘& > 0 (2.35)

the solutions of which define the mean order parameter ¢, and in terms of which the generalized equilib-
rium grand potential is defined as

F@) _
%

Bé = f(¢) — Bo (2.36)

W~

where f (¢) is the Landau free energy densty. It is emphasized that for the case of a conserved order
parameter, B is a chemical potential (i), @ is actually the grand potential density (w) and f is the
Gibbs free energy density (f). For a non-conserved order parameter in an external field B, @ is actually
the Gibbs free energy density. It should also be emphasized that the Landau mean field theory entirely
neglects temporal and spatial fluctuations and evaluates thermodynamic quantities at the most probable
homogeneous state of the order parameter, ¢.

The next steps in mean field theory involve the construction of the Landau field free energy density
f(¢) = F(¢)/V. Recalling that the mean value of ¢ vanishes in the disordered state (i.e. ¢ = ¢ = 0), and
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considering second order phase transitions in the vicinity of the critical point, or first order transformations
where the order parameter in the ordered phase suffers only a small jump from ¢ = ¢ = 0, f(¢) is assumed
to be expressible in a series expansion of the form

M

flo) = fro=0)+ 3 2D (2.37)

n=2

The coefficients of Eq. (2.37) are dependent of temperature as well as other thermodynamic variables.
In what follows, the free energy in Eq. (2.37) will be tailored to several practical and pedagogical phase
transformation phenomena. For convenience, the hat notation will be dropped from the Landau free
energy density f .

2.2.3 Phase transitions with a symmetric phase diagram

It is instructive to use Eq. (2.37) to construct a Landau free energy expansion corresponding to the
simple binary mixture model and the ferro-magnetic Ising model, which were examined at the beginning
of this chapter. In the case of magnetism, symmetry considerations can be used to guide the choice of
coefficients. Specifically, the fact that turning a magnet 180 degrees does not change its thermodynamic
state internally implies that the ”upward” and ”downward” pointing states (below T.) are energetically
equivalent. Similarly, in the simple binary model with a symmetric phase diagram the free energy is
symmetric in the two states on either side of the spinodal concentration at ¢ = 1/2. Moreover, in both
cases above the critical temperature, there should only be one globally stable, disordered (¢ = 0) state.

The above considerations on symmetry imply that for both these simple systems, only even powers
in the expansion of the Landau free energy density in Eq. (2.37) need to be retained, leading to

4(T)
4

(T)
2

a a
1(9) = alT) + =6 + = 26" + 0(¢) (2:38)
The first of the extremization conditions in Eqgs. (2.35) implies minimizing Eq. (2.38) with respect to the

order parameter (B = 0 for the symmetric alloy or ferromagnet). This gives

of _ _ =
%_o:m_(o,i a4> (2.39)

For the first root, ¢ = 0, to be the only root above the critical temperature, both as(T) > 0 and
as(T) > 0 (T > T,). For the non-zero roots of Eq. (2.39) , which emerge below the critical temperature,
it is necessary that as(7T) < 0 while ay(T) > 0 (T < T.). Assuming that as changes sign continuously
across the critical temperature, it is reasonable to expand it to first order in a taylor series about T' = T,
according to ag(T) ~ a3(T — T.). Meanwhile a4(T") must be of the form a4(T) ~ af + b3(T —T¢) + -+,
where a3, af and b are positive constants. Thus, close to and below T, mean-field theory predicts two
minimum (i.e. stable) order parameter states given by

qsmi,/%(TC—T), T<T. (2.40)
4

Note that as T — T, Eq .(2.40) continuously approaches ¢ = 0.
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Figure 2.3: (a)Landau free energy of a simple binary mixture or Ising model. Two stable phases arise
continuously from one for T' < T,.. (b) Corresponding two-phase co-existence phase diagram for T' < T..
The spinodal line is indicated in grey dashed line.

Figure (2.3a) shows the energy landscape of Eq. (2.38), revealing the existence of one stable state
above T, (¢ = 0) and two below T,. The figure shows that the disordered, ¢ = 0, phase gives way to
two minima, i.e. stable, states below T = T.. Figure (2.3b) shows the corresponding phase diagram of
coexisting minima of f(¢) in (T, ¢) space. The dashed line indicates the so-called spinodal line defined
by the locus of points where 92 f /0¢? = 0. It will be shown in section (4.6), when dynamics is examined,
that an initial state with ¢ = ¢, quenched below the spinodal line becomes linearly unstable to thermal
fluctuations and spontaneously decomposes into the two stable phases whose order parameter is given
by Eq. (2.40). This is referred to as spinodal decomposition. A high temperature phase corresponding
¢, = 0 becomes immediately unstable to fluctuation for any temperature 7' < T,. where T is the highest
co-existence temperature, referred to as a critical or spinodal temperature. Critical fluctuations in ¢
grow continuously from to their initial value toward their asymptotic values on the phase diagram, while
the domain size of the two emerging phases become divergent in time (for an infinite size system). This
is an example of a second order phase transformation. When an initial phase with ¢, # 0 is quenched
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below the two-state co-exitence but above the spinodal line, is linearly stable to fluctuations and requires
a threshold activation energy (i.e. nucleation) to begin the phase separation process. In this case there
is an abrupt change in the order parameter to the value of the nucleated phase. This is an example of a
first order transformation. It should also be noted that phase diagrams such as Fig. (2.3), terminating in
a critical point typically describes phase transitions between two phases of the same geometric symmetry.

2.2.4 Phase transitions with a non-symmetric phase diagram

It is possible to represent asymmetry in a phase diagram containing a critical point by adding odd powers
to the free energy expansion. An example of this is in a gas-liquid transition of a pure material. It is
convenient to define, in this case, the order parameter to be the density difference from the critical density,
i.e. ¢ =p— pc. It turns out that the asymmetry can be addressed by retaining at least one third order
term in the Landau free energy density expansion of Eq. (2.37),

az(7T) a3(T) as(T)
2 3 4

f(9,T) = ao(T) + ¢* + ¢° + o'+ 0(¢°) (2.41)

The choice of parameters can be ”back-engineered” to obtain an appropriate phase diagram. It is once
again assumed that as(T) > 0 for all temperatures in the neighborhood of the transition, which is still
second order for the gas-liquid transition in the vicinity of the critical point.

The thermodynamics of this system is described by the grand potential density. In the context of
Eq (2.36), B is found by noting that

dw _of B
a5~ 0 B= gy = e =) (2.42)

where the chemical potential has been referenced to its value at the critical point u. = p(7.). This
implies that f itself is also referenced relative to that point, which does not change anything. The grand
potential to be minimized in this system is therefore

w(o, T, ) = f(¢) — Au(T)¢

(2.43)
The properties of as, as, a4 can be better discussed by applying the extremum conditions in Egs. (2.35)

to Eq. (2.43) very close to the critical point, where it is assumed that Ay = 0 to lowest order in T'— T, (to
be confirmed below). The becomes the same as applying the extremum conditions to f(¢) (Eq. (2.41)),

which gives

plas +asp +asp®) = 0
as + 2a3¢ + 3a4¢2 > 0 (2.44)

The disordered phase is stable for T > T, for as(T) > 0. Conversely for a a continuous transition (a
second order transformation) it is required that the three roots (i.e. states) of the cubic polynomial go
to one as T' — T, from below. This can be achieved by demanding that both a3(7") — 0 ad a3(T) — 0
as T — T,, and that they both become negative for T' < T,. Once again, it is sufficient for as(T) to by
positive and nearly constant in the neighbourghood of T' = T,. The lowest order temperature expansions
of these constants satisfying these conditions is given by

ay = a§(T —1T.)
a3 = a3(T—T,)
as = aq(Te) (2.45)



In general, below the transition temperature, it is required to have two stable states whose grand
potential is equal for both the liquid and gas phases. The density of these two sates, however, will in
general not be symmetrically positioned about p.. The trial form of the grand potential satisfying these
assumptions is
D(T)

4
Comparing Eq. (2.46) to Eq. (2.43), where the free energy is expanded according to Eq. (2.41), gives

w(, T, 1) = wo(T) + (60— L) (¢ — ¢9)° (2.46)

D(T) = aa(T)
1 a3(T)
- T T - _
3L +0,(T) =~
dax(T)  4a3(T)
T)—¢s(T))? = —
(2.47)
from which the liquid-gas order parameters are determined to be, to lowest order in T' — T,
P _ag(T - T.) —ay(T - Tt)
k 3a4(T) as(T,)
as(T — Tt) —a3(T — T)
- _ 2.48
¢g 3(14 (TC) ay (TC) ( )

Once again, one minimum density is approached continuously as T' — T, from below. It is also seen that
the chemical potential, given by

o (Z4(T

D) (61.(7) + 6, (T))61(T)6(T) ~ O(T ~ T,)? (2.49)

Ap(T)

2.2.5 First order transition without a critical point

First order transitions typically occur between phases of different geometric symmetry. As a result the
phase diagram of a first order transition does terminate at a critical point, i.e. with the two co-existing
phases merge into one. The simplest way to break this symmetry is by adding cubic term of negative
sign to the Landau free energy density expansion of Eq. (2.37),
¢? A
f(gb,T):aO(T)—Fag(T—Tu)?—ag?—FuI (2.50)

where as, as and u are positive constants and T, is a reference temperature different from a critical point.
This free energy exhibits a one global minimum at high temperature, two equal minima at transition
temperature T'=1T,, =T, + 2a§ /9asu and one global minimum, and a meta-stable minimum below T5,.
The free energy landscape f(¢,T) for this case is shown in Fig. (2.4).

Above the transition temperature the free energy of the high symmetry phase (¢, = 0) is a global
minimum —although it is evident that a second meta-stable low symmetry phase, ¢ > 0, emerges even
above T,,. Exactly at the transition temperature,

f(on,Tr) = f(or,Tin) (2.51)
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Figure 2.4: Landau free energy for a first order transformation. The double welled curve with a cubic
term in ¢. One global minimum arises when the coefficient of the square term in frux (¢, T) is positive.
Below the melting temperature this phase becomes meta-stable and a new globally stable state of ¢
emerges.

Note that the minimum corresponding to ¢, (for T < T,,) does not emerge continuously from ¢, as in a
second order transition. Instead it emerges as a global minimum at 7" = T, discontinuously, that is, at
discrete distance from ¢y,.

Once again the second derivative of the bulk free energy, f” = 0%f/0¢?, plays an important role in
determining the stability or meta-stability of a phase. If the high temperature minimum state ¢ (left
well in Fig. (2.4) ) is cooled to a temperature sufficiently below T,,, where f" < 0, this phase (i.e. the
initial phase ¢p) will be linearly unstable to all fluctuations, and decompose into the globally more stable
state (right well in Fig. (2.4)). For temperature just below T, f" >0, and the initial high temperature
phase will be metastable, implying that it will not be linearly unstable to all fluctuations. As a result
large enough thermal fluctuations and nucleation are required to initiate the transition into the globally
stable state. These considerations will be made more concrete in section (4.7) when the fluctuations and
the stability of order parameters is discussed.
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Chapter 3

Spatial Variations and Interfaces

Thus far only mean field free energies have been discussed. These describe only the bulk properties of
the phases of a material. Only bulk thermodynamics can be considered with this type of free energy,
which implies, among other things, that phases are infinite in extent and uniform. No consideration has
been given to finiteness of phase and, more importantly, multiple phase and the interfaces separating
them. As has been mentioned several times already, interfaces, their migration and interaction are
perhaps the most important features governing the formation of microstructure in metals (and indeed
most materials). This section incorporates interfacial energy into the mean field free energy, resulting
in a free energy functional —coined the Ginzburg-Landau or Cahn-Hilliard [39] free energy functional.
This is an expression that is dependent on the entire spatial configuration of a spatially dependent order
parameter field. This modification allows the study of spatio-temporal fluctuations of order parameters,
as well as the meso-scale dynamics that govern various pattern forming phenomena.

3.1 The Ginzburg-Landau Free Energy Functional

To show how to incorporate interfaces between phases, it is instructive to return to the simple binary
model examined in section (2.1). It is reasonable to expect that the interaction energy between elements,
previously assumed constant, is in fact spatially dependent and varies between any two elements ¢ and j.
Assuming for simplicity that ea4 = egp (b = 0), the mean internal energy, U = (E[{n;}]) in Eq. (2.12),
can be expressed as

1 N
U=35> > el@— 7)ol - ¢) (3.1)
i=1 j#i

where the constant term in Eq. (2.1) has been neglected. The interaction energy depends on the separation
between elements (€;; = €;;) and the j summation is over the nearest neighbours of the i element for
simplicity. To proceed, use is made next of the algebraic identity

0i(1— ;) = ([¢s — 9517 — 07 + &3] + 204) /2 (3.2)

Equation (3.2) is substituted into Eq. (3.1), which is then simplified by making the assumption that
for any i, €;; is negligible for any j > v (which in this case spans the 4 nearest neighbours). These
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assumptions make it possible to re-write Eq. (3.1) as

1 , 1
U:ZZZEU(@*%‘) *52(1*@)@ > e (3.3)

i=1 j#i i=1 J#i

Further, assume that the interaction energy per particle €;; — €;/v, where ¢; is the isotropic mean energy
over the v nearest neighbours of element .

In the limit where any two adjacent elements 7 and j represent two locations that are physically
separated by an ”infinitesimal” distance ! the sum

%Z(@ _ g2 = % l <(¢i ;;53) i (¢ ;2¢T) ) i <(¢z' ;j’L) 4 (¢ _(12¢B) )]

i

~ V() (3.4)

in 2D, where ¢r, ¢r, ¢ and ¢p represent ¢; evaluated at the right, top, left and bottom neighbours
of the 7" element, respectively. The large round brackets in the first line of Eq. (3.4) represent the
magnitudes of one-sided gradients at the point i. The vector Z; on second line of Eq. (3.4) represents the
position centered at the element labelled by ¢. To make the transition to the continuum limit complete,
the 74" summation in Eq. (3.3) is also replaced by its continuum analog, an integral. In d-dimensions

this is accomplished by writing
dlz
E — — (3.5)
i v a

where the division by a? is intended to encapsulate the volume that was previously contained within one
element, which is the distance between two discrete points —the lattice constant.
With the definitions in Egs. (3.4) and (3.5) the total internal energy in Eq (3.3) can be written, in
the 3D continuum limit, as
1 9 | - 3 -
B= [ (SIWaV0P + o re@o@(1 - 6(7) ) 7 (36)
v Qa
where the coefficient W, = /e(Z)/(va) has been defined (a is replaced by a(4~2) in d dimensions). This
parameter will be seen below to be intimately connected with surface energy since it multiples a gradient

in the the order parameter ¢, which only varies significantly at interfaces where there is a change of order.
In a similarly way the total entropic part of the free energy can be written as

37

% (3.7)

5 = —hp [ (0@ 0(@) + (1 = 9() (1 - 6(2))
where the integrand in Eq. (3.7) can now be seen as a local entropy density (i.e. ¢ — ¢(Z), making

the the total entropy an integral of the entropy density overt the volume V of the system. Combining
Egs. (3.6) and (3.7) thus yields the total free energy of the binary alloy,

Flo.11 = [ {51Wo99f + stol). T(@) | a2 (3.5

1Here ”infinitesimal” refers to a length scale which is small relative to the size of the interface width, but still large
compared to the inter-atomic spacing of the solid.
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where the bulk free energy density is given by

£6(). 7)) = ()1~ 6(2) + B (0@ o) + (1 @) (1 —0@) (39

2a3

Equation (3.8) is the simplest representation of a free energy that combines the bulk thermodynamics
of a simple binary alloy with a minimal description of interfacial energy. Equation (3.8) is often referred
to the Ginzburg-Landau [96] free energy. The free energy of the form in Eq. (3.8) serves as a starting
point for many phenomena that are modeled using the phase field methodology. In general, f(¢,T) can
be a complex function like Eq. (3.9), or it can be approximated by a polynomial series that is interpreted
as a Taylor series expansion of f(¢,T) about disordered phase (e.g. via the generalized free energy
expansion of Eq. (2.37)). This formalism allows for a meso-scopic description of that accounts for bulk
thermodynamics and interfaces. Consider, for example, the magnetic system studied in section (2.1.2).
The gradient term in Eq. (3.8) describes a microscopic zone where the local magnetization varies abruptly
between two magnetic domains .

3.2 Equilibrium Interfaces and Surface Tension

Statistical mechanics dictates that thermodynamic equilibrium is characterized by a state that minimizes
some thermodynamic potential. For bulk phases (i.e. ignoring interfaces) this implies that 0G(z;)/0x; =
0 for all x;, where x; represent any internal degree of freedom and where G is a relevant potential. For the
case of the Ginzburg-Landau free energy defined in Eq. (3.8), equilibrium must, by construction, involve
“states” that are actually continuum fields such as ¢(Z), T'(Z), etc. An analogous example is one where it
is required to find the form of the equilibrium curve of a cable stretched between two poles. That case is
solved by finding the shape of the curve that minimizes the total potential energy, which is a functional of
the cable profile. Analogously, in a system described by Eq. (3.8), “equilibrium” must involve achieving
a state of the field variable ¢(&) that minimizes the total Ginzburg-Landau free energy functional F[¢]
(e.g. for the Ising ferromagnet) or the grand potential Q = F[¢] — p [ ¢ d*F (e.g. for the alloy).
The minimization process of a functional F[¢] with respect to the function ¢ is achieved by a so-called
variational derivatives, and is denoted by
SF (9]
00

For a general free energy functional of the form

=0, (3.10)

FIo) = [ 10,000,000V (3.11)

the variational derivative of F[¢] with respect to the field ¢ is given by letting ¢ — ¢ + d¢ in Eq. (3.11),
expanding to linear order in d¢, and identifying dF/d¢ via the definition,

Fl¢+0¢] — Flo] = /V (gamm) dv (3.12)

Applying this definition to Eq. (3.11) gives,

m o (5555) va (3((3;5)) w0 (5a) | (313
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The first term on the right hand side of Eq. (3.13) affects only the algebraic, or bulk, part of the Ginzburg-
Landau free energy functional. The second term is a recipe for obtaining the variational of the free energy
with respect to the gradient energy terms of ¢.

Consider, as an example, minimizing the free energy in Eq. (3.8) for the Ising model with B = 0, and
assuming W, is constant. Using the free energy is given by Eq. (2.38), Eq.(3.10) becomes

0] .
W20 — 50 = WEV260 — aa(T)eh — aa(T)e = 0 (3.14)
0

where the notation ¢q is used here to denote the minimizing state of F[¢]. The solution of Eq. (3.14)
in 1D (which represents an equilibrium one dimensional two-phase interface) is obtained by multiplying
both sides of the equation by the d¢g/dx and integrating from —oo to a position z. This gives,

W2 [T 9 (ds\ [T 9 O .,
2 /_wax’<8x’> da” = _wax’%daj =0
W2 (9¢o\’
2 (52) - Uento) = flon(-oc) = 0 (3.15)
Substituting f(¢) = a2¢?/2 + as¢*/4 into Eq. (3.15) gives
= Jleel o (2
do(z) = o, h(ﬁ&) (3.16)

where here £ = W, /+/|az| (recall that near a critical point, az = a,(T — T¢)) is the correlation length
discussed previously. This is a mesoscopic length scale over which the change of order in ¢ occurs.
The hyperbolic tangent solution has two limits: ¢g(z — +£00) = £+/|az|/a4, which describes the order

parameter in the bulk phases of the alloy. The transition region wherein —+/|az|/as < ¢o(x) < +/|az|/a4
defines the interface between the two phases.

To calculate the interface tension associated with the order parameter profile in Eq (3.16), ¢¢ is
substituted into full Ginzburg-Landau free energy Eq. (3.8), after which the bulk free energy, given by
f(é0) (T dependence dropped), is eliminated using the the second line of Eq. (3.15). Thus,

/. {VZ (%ﬁ)) + f(%(f))} s
/. {Wf (%) + f(¢o(—oo))} dr

The second term in the second line of Eq. (3.17) is the total free energy of a bulk solid phase. Subtracting
it out leaves the remaining, interfacial, free energy, i.e.,

00 2
ozF—Feqzwf/ (%ﬁ“) dz (3.18)

where F,q is the bulk free energy integrated over the volume of the system 2.

F

(3.17)

2Note, that for the case of a conserved order parameter, the definition of surface energy is given in terms of the grand
potential Q[¢]. This will be used in the study of binary alloys in the next chapter.
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The units of Eq. (3.18) can be made more apparent if the order parameter fiele ¢,(x) is written as
bo(u) where u = x/+/2€.. Substituting this scaling form into Eq. (3.18) gives

Woy/

oy = /_ Z <8¢5£”)> du (3.20)

Since W, has units [J/m]'/? and a, has units of [J/m?], ¢ clearly has units of energy per unit area (or
energy per unit length for for a 1D interface). It is referred to as the surface tension because there is a
force —or tension— that resists any increase in interface area.

Free energies similar to Eq. (3.8) and equilibrium profiles similar to Eq. (3.16) will be encountered
frequently in phase field modeling of solidification or other phase non-equilibrium phase transformations.
In the case of solidification, for example, the phase field ¢ will denote the local order of a solid liquid
system. In that case, the equilibrium ¢ profile thus characterizes the solid liquid interface, an atomically
diffuse region of order &. within which atomic order undergoes a transition from a disordered liquid to
an ordered solid.

where
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Chapter 4
Non-Equilibrium Dynamics

The previous chapter examined the significance of spatial variations in an order parameter. In the context
of materials microstructure, these variations demarcate regions of bulk phase from phase boundaries or
interfaces. Another important aspect that must be examined is the time dependence of order parameter
changes. Along with the dynamics of other fields (e.g. temperature), the dynamics of order parameters
are a critical ingredient in the development of a phenomenology for modeling the microstructure evolution
of in phase transformations.

It is typical in non-equilirium dynamics to use a locally defined equilibrium free energy or entropy to
determine the local driving forces of a phase transformation. These generalized forces or their fluxes are
used to drive the subsequent kinetics of various quantities. The premise of this approach is that matter
undergoing phase transformation is assumed to be in local thermodynamic equilibrium and is driving
toward a state of global thermodynamic equilibrium (a state which is, however, never actually realized
in practice). This formalism thus constitutes a coarse-grained description where space can be thought of
as a collection of volume elements, each large enough that it can be assumed to be in thermodynamic
equilibrium (with respect to the local temperature, volume, particles, etc.) but still small enough to
resolve micro-scale variations in microstructure.

Kinetic equations for order parameter fields are called conserved if they take on the form of a flux-
conserving equation. This implies that an integral of the the field over all space is a constant (e.g. total
solute solute concentration in a closed system). The time evolution of fields whose global average need
not be conserved is typically governed by a mon-conserved equation. These include magnetization and
sublattice ordering. The kinetics of these quantities are typically formulated as a Langevin-type equation,
which evolves field such as to minimize the total free energy (or, conversely, to maximize the total system
entropy). In other words, non-conserved fields evolve according to the steepest functional gradient of the
free energy, which hopefully pushes the order parameter to minimum of the free energy landscape.

The following subsections outline the basic evolution equations governing conserved and non-conserved
order parameters. In all cases the free energy being referred to is in the context of the Gizburg-Landau
free energy functional in Eq. (3.8), where f(¢,T) depends on the particular phase transformation under
consideration.
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4.1 Driving Forces and Fluxes

Consider a system that is in thermal equilibrium. Its change in entropy is given by
_ 1 p Hi
dS = ZdU + dV Z AN (4.1)

where T is the temperature, V its volume and N; the number of particles of species i. As this sys-
tem undergoes a phase transformation, the second law of thermodynamics demands that dS > 0 in a
closed system. In the case of a constant volume, the driving forces or so-called ”affinities” driving the
corresponding changes in internal energy (U) and particle number (N;) are

a1
auU T
ds Hi

_ M 4.2
dN; T (4.2)

If Eq. (4.1) is applied locally to small volume elements of a non-uniform system, then the second law
further implies that changes, or gradients, in S from one location in the system element to another must
be mediated (i.e. accompanied by) gradients of the driving forces (i.e. affinities) of the local internal
energy and local number of particles. More generally, changes in any quantity are assumed to be governed
by a flux of that quantity which is linear combination of gradients of the driving forces in Eq. (4.2). i.e.

- 1 N i
Jo = MV (T) - ;Mojv (%)

N
Ji = MyV <111> - ;Mijv (%) (4.3)

Here J_E) is associated with a flux of internal energy and j; is associated with the flux of particle number
of species i. The coefficients of the tensor M;; (3,5 =0,--- N) were derived by Osanger, who also showed
that the Osanger coefficient matrix is symmetric. This is referred to as the Osanger reciprocity theorem.
The derivation of Eqs. (4.3) presented here is empirical, based largely on intuition. The reader is referred
to reference [18] for a more mathematically rigorous treatment of generalized driving forces based on
entropy production.

4.2 The Diffusion Equation

It is instructive to illustrate how to use the driving forces in Eqs. (4.3) to derive Fick’s second law of
mass and heat diffusion. Consider, first, mass transport in a one-component alloy at a fixed, uniform
temperature 7. In the dilute limit, it suffices to consider only fluxes in the solute species and ignore
fluxes in the host atoms, i.e. only the off-diagonal Osanger coefficient M7; # 0. Under these conditions
the flux of mass is governed by fl = =M1V (u1/T), i.e. that of the solute atoms. Since solute atoms
must be conserved, their dynamics must obey the flux conserving equation of mass conservation, i.e.

Z=-V-j (4.4)



Substituting above the expression for the flux Jyinto Eq. (4.4) gives

Bc o M11
a =V <TW1>

= V. <RM“vc) (4.5)

Cc

where ¢ is the local solute concentration (in units of moles/volume) and the expression p; =~ RT lnc (R
is the natural gas constant) has been used to obtain the second line of Eq. (4.5). Equation (4.5) implies
that M1 « ¢, and can be immediately recognized as Fick’s second law with

_ RMn
¢

D

(4.6)

It is interesting to note that the Osanger coefficient —which is inherently linked to microscopic parameters
and essentially intractable to calculate analytically— can be experimentally approximated by measuring
the the diffusion coefficient D(c).

Fourier’s law of heat conduction in a pure materials can similarly be derived by considering the flux
of internal energy with only Mgy # 0. The calculation proceeds identically to the one above, yielding

0H
=V . (kVT 4.7
=V (T) (4.7)
where H is the local enthalpy density and k is the thermal conductivity coefficient, given by
RMyg
k= T2 (4.8)

The Osanger coefficient Mg can be determined experimentally by measuring the heat conduction coef-
ficient.

4.3 Dynamics of Conserved Order Parameters: Model B

Consider next the dynamics of a general order parameter that represents a quantity that is conserved.
For the specific example of the simple binary alloy (see phase diagram in Fig. (2.3b)) the definition of
the order parameter represents an impurity concentration. A high temperature disordered phase with
average concentration ¢ = ¢, will undergo phase separation once temperature is lowered below T,.. Under
isothermal conditions, the dynamics of this process are fundamentally driven by gradients in chemical
potential between or within phases (e.g. the second of Eqs. (4.2)). A local chemical potential must
be derived from the Ginzburg-Landau free energy as a functional of the concentration. Following the
approach of Cahn and Hilliard [39], this done by defining

_ 0F[g]
n= 5 (4.9)

where the right had side of Eq. (4.9) represents a variational derivative rather than a partial derivative. In
equilibrium, when the free energy density depends on local gradients of the order parameter ¢, Eq. (4.9)
defines a differential equation for the equilibrium order parameter profile. In mean field theory when
spatial gradients are neglected, it reduces to the usual definition of the chemical potential.
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Figure 4.1: Top to bottom: time sequence showing phase separation during spinodal decomposition.
Fluctuations on small length scales grow into larger domains, the size of which diverges with time ac-
cording to a power law. Color represents solute concentration different in the two phases, with red being
the solute rich phase and blue the solute poor phase.

Since ¢ represents a concentration difference, it must satisfy the mass conservation equation,

00 .
S =-V-J (4.10)

The flux in Eq. (4.10) is derived from Eq. (4.3) (assumed for simplicity that the non-diagonal Osanger
coefficients are zero) as

J=—-MV-p (4.11)
where
M4 M4
M=—= 4.12
T T, (4.12)

is the mobility of solute. The replacement of T'— T, assumes that just below the critical point, temper-
ature can be approximated by the critical temperature T, to lowest order. Combining Eqgs. (4.9)-(4.11)
gives the following equation of motion for the order parameter of a phase separating alloy mixture.

9 §F
5=V (MV%> (4.13)

Equation (4.13) is the celebrated Cahn-Hilliard equation, or Model B as it is often called in the condensed
matter physics literature, after the paper by Hohenberg and Halperin [92], which studied and classified
the various order parameter models and the associated physical phenomena they can be used to describe.
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As a specific example of the Chan-Hilliard equation for spinodal decomposition, f(¢,T) from Eq. (2.38)
is substituted into Eq. (4.13). Applying the rules of variational derivatives in Eq. (3.13) gives

99 _ 2 [ 12v2 ﬁ
5 = MV ( W2V ¢+a¢) (4.14)
= MV?(-W2V?¢+ azd + as9”) (4.15)

where M is a mobility for atomic re-arrangement, W2 is an energy per unit length and f,as, a4 are
energies per unit volume. it has been assumed for simplicity that the mobility M is a constant. It should
be noted that because of the conservation law a term of the form V¢ is be generated. Figure (4.1)
shows a simulation of the dynamics of Eq. (refcahn-hilliard) with as = —1 and a4 = 1 and M = 1.
The concentration field ¢ was initially set to have random initial fluctuations about ¢ = 0 and periodic
boundary conditions were used in the simulation. It is seen that since as < 0 (which is the case for
T < T.), phase separation occurs. The average alloy concentration satisfies (¢) = ¢, = 0, the initial
average of the order parameter. Stochastic noise (discussed in section (4.6)) which emulates thermal
fluctuations was not used in this simulation. Since any for any temperature 7" < T, the system is
unstable to any fluctuation, phase separation in this example was merely initiated using the randomness
inherent in computer-based number generation. Numerical methods for simulating model B are discussed
in further detail in section (4.9).

4.4 Dynamics of Non-Conserved Order Parameters: Model A

Some phase transformations involve quantities (order parameters) that do not evolve constrained to a
conservation law. Well known examples include magnetic domain growth, order/disordered transitions,
or isothermal solidification of a pure material in the absence of a density jump. In the presence of a
small magnetic field, a disordered magnetic state with zero magnetization, quenched below the critical
temperature will eventually develop a net magnetization. Even cooling below the Curie temperature
without an external field will generally lead to a small net magnetization in a finite system. Similarly,
a glass of water (disordered phase) cooled below the melting temperature will entirely transform to
ice. This is in contrast to phase separation in an alloy mixture, where the the system evolves toward
equilibrium under the constraint that total solute be conserved. Order parameters that evolve without
global conservation are called non-conserved order parameters.

Motivated by Eq. (4.1), a new driving force for the rate of change of non-conserved order parameter
is defined as 6F/d¢. Since there is no conservation imposed on (@), the simplest dissipative dynamical
evolution for a non-conserved order parameter is given by Langevin type dynamics (omitting noise for
the moment),

9¢ OF[p,T] _ 22,  Of(8,T)

T M o0 M<WOV¢ 96 > (4.16)
The right hand side of Equation (4.16) is a driving force that drives the system down gradients in the free
energy landscape of F[¢]. This equation is referred to as model A in Hohenberg and Halperin classification
of phase field models[92]. It is a paradigm used to describe the evolution of an order parameter that
does not satisfy a global conservation law. Using, once again, f(¢,T) from Eq. (2.38), the dynamics of a
system of Ising spins in the absence of an external field evolves can be described by

96 _

5 M (W2V%¢ — asg — asd®) (4.17)
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Figure 4.2: Left to tight and top to bottom: time sequence of magnetic domain formation and coarsening
under model A dynamics. The colour scale is the z-direction of magnetization, with blue representing
downward magnetization and brown upwad magnetization.

which is obtained by substituting Eq. (2.38) into Eq. (4.16). For a system of Ising spins in an external
field, Eq. (2.50) can be used, where the constant az can describe a coupling to the externalfield. Fig-
ure (4.2) shows a sequence of time slices in the evolution of magnetic domains simulated numerically using
model A dynamics. The grey scale shows the magnitude of ¢, which in this case defines the z-direction
magnetization. The simulation starts with initial fluctuations, out of which magnetic domains eventually
emerge and coarsen. Numerical methods for simulating equations such as the Cahn-Hilliard equation are
discussed in more detail in section (4.9).

It is worth mentioning the tempting pitfall regarding the use of Model A dynamics to evolve the
time evolution of a conserved order parameter. Specifically, it might appear feasible to use Eq. (4.16)
to describe the dynamics of phase separation in a simple binary alloy by adding a Lagrange multiplier
term of the form A [ &(Z)d3T to the free energy in order to conserve total solute. While conserving total
mass, such a free energy allows for the possibility for a solute source in one part of the system to be
countered by a solute sink many diffusion lengths away from the source. That would be unphysical for
any propagating phenomenon, not to say the least about a slow diffusive processes. Such an approach
can only be used to describe the equilibrium properties and dynamics would be fictitious.

4.5 Generic Features of Models A and B

Equations (4.14) and (4.16) underlie the basic physics of many common phase field models in the liter-
ature. They have the following generic features: (i) an appropriate order parameter is defined for the
phenomenon in question; (i) a Ginzburg-Landau free energy density is constructed to reflect the sym-
metries of bulk phases as a function of temperature (and other intensive thermodynamics quantities), as
well as the interfacial energy in the system; (iii) equations of motion for the order parameter constructed
on the principle of free energy minimization and, if required, conservation laws. In chapter (5) model A
and model B type equations will appear again, this time coupled to each other in the description of the
solidification of a pure material.

A fourth ingredient that must strictly be included in Eqgs. (4.14) and (4.16) is the addition of stochastic
noise sources with which to model thermal fluctuations. These are crucial to properly describe all the
degrees of freedom at the microscopic level (e.g. phonon vibrations in a solid or atomic collisions in
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a liquid) that act on length scales below the correlation length ., which sets the scale over which
fluctuations or sharp changes of the order occur (e.g. & = W,/+/|az| in section (3.2)), and on atomic
time scales. These are usually subsumed mathematically into a random variable appended to the end of
the model. The role of noise on order parameter fluctuations are discussed further in section (4.6).

It should be noted that it is often not possible to define a well defined order parameter ¢ in the sense
outlined in Landau theory (e.g. glasses). Indeed, in most phase field models the ”free energy” is expanded
in terms of a what is generally terms a ”phase field parameter” ¢, which is motivated from Landau theory
but is otherwise phenomenological in nature. Conversely to the more fundamental approach taken here
in the construction of models A and B, many phase field models and their dynamics are constructed to
be consistent with a particular class of kinetics, sharp-interface equations, etc. This approach goes back
to Langer [137]. In that sense noise can be seen as a way to stimulate nucleation of phase and appropriate
interface fluctuations.

4.6 Equilibrium Fluctuations of Order Parameters

The notion of equilibrium can often be misleading as it gives the impression that a system just sits there
and all motion in time has stopped. Due to thermal fluctuation, all quantities of a system in equilibrium
are actually continuously fluctuating in space and in time in a way that is consistent with the statistical
thermodynamics. This section analyzes equilibrium fluctuations of order parameters governed by model
A and model B dynamics.

4.6.1 Non-conserved order parameters

To take thermal fluctuations into account for a phase described by a non-conserved order parameter,
Eq. (4.16) needs to be upgraded to

9 . 6F[p,T] _Of(8,T) ﬂ
5= —M7 =M <W3v2¢ 90 ) +&(Z,t) (4.18)

where £(Z, t) is a stochastic noise term, as described in section (4.5), which is added to incorporate thermal
fluctuations that are microscopic in origin (e.g. phonon vibrations) which take place on length sales
smaller than correlation length &, i.e. angstrom scales, and on ps time scales. As a result, their addition
as a "noise” source superimposed onto the slower long wavelength dynamics of the order parameters field
is in most situations justified. These were first added into phase field modeling by Cook [52]. The random
noise term & is selected from a statistical distribution satisfying

(€@ @) = AS(T — &)5(t — 1) (4.19)

where the primes denotes a different position/time than the un-primed variables and A is a temperature
dependent constant. In plain english, Eq. (4.19) means that any two fluctuations in the system are
uncorrelated in space (i.e. between positions Z and #’) and time (i.e. between time ¢ and t').

The form of A in Eq. (4.19) is found by considering the dynamics of model A for a phase that is in
a stable state of the free energy density (e.g. Egs. (2.38) and (2.50)). In the case of small deviations
in the order parameter, ¢ = ¢min + 0¢, the bulk free energy can be approximated to lowest order by
f(d,T) = foin + (a2/2)6¢? for a stable, single-phase, state. Here az = f”(¢min) and double primes
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denote second derivative. Model A dynamics can thus be approximated by

% =M (W2V%5p — axd¢) + &(Z,1) (4.20)

Re-writing Eq. (4.20) in Fourier space gives

9o . .
% = —M (az + W2k?) . + & (4.21)
where k is the magnitude of the wave vector k= (ko Ky, kz), qgk represents the Fourier transform of
d¢(x,t) and & is the Fourier transform of the noise source (assumed continuous on meso-scopic time and
length scales where the order parameters is continuous). Equation (4.21) is a first order linear differential
equation, whose solution is

t
on(t) = ef]VI(Wfk2+a2)t (ék(t = 0) +/ eM(WkaJraz)t’ék(t/)dt/) (4.22)
0

Consider next the structure factor, defined according to
S(k,t) = (|rI) (4.23)

(see Appendix (C.1) for details of arriving at Eq. (4.23)). The structure factor characterizes the statistics
of spatio-temporal fluctuations in the order parameter of the phase and can be directly measured from
an x-ray or neutron scattering experiment of a material or phase. The brackets in Eq. (4.23) denote
ensemble averages or averages of \g{)k|2 over many realizations of the system fluctuating in time, about
equilibrium. Substituting the solution for ék(t) into the definition of S(k,t) gives,

A
S(k,t) = e 2 S(k,t = 0) + o (1—e") (4.24)
k

where the definition 7, = M(W2k? + a3) has been made. The transient dynamics of the structure
factor describe the way fluctuations on certain length scales decay in a system. For example, the long
wavelength k& — 0 modes decay exponentially with a time scale t. = 1/(Mas). Comparing the late
time (t — 00) limit of Eq. (4.24) with its theoretical and experimentally determined form (the so-called
Ornstein Zernike form [111] ) gives,

_ A APMay _ (ksT/Sf7)
M e T T 2R T 1+ 6k (42)

where f" is the second derivative of the bulk free energy density f (¢,T) evaluated at the equilibrium
order parameter, ¢min, and &, = W, /\/az is defined as the correlation length. The right hand equality in
Eq. (4.25) A gives

A= 2MkgT (4.26)
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4.6.2 Conserved order parameters

The analysis of section (4.6.1) can be extended in a straightforward way to the fluctuations of a phase
described by a conserved order parameter. Expanding once again the order parameter as ¢ = ¢min + 90,

linearizing the free energy about ¢ = @i, and substituting into Eq. (4.14) now gives 1,

86 1"
00 = v (W2 + ) 6o + €@, 1) (4.27)

where for conserved dynamics, the noise term at the end of Eq. (4.14) satisfies
(@)X 1)) = AV26(Z — &)o(t —t) (4.28)

Equation (4.27) is different from Eq.(4.20) by the addition of the outer laplacian, due to the conservation
law. The solution of Eq. (4.27) in Fourier space is exactly the same as Eq. (4.22), expect that now
Ve = ME>(W2K? + f”)7 i.e there is an extra k? multiplying the 7 of section (4.6.1). It turns out that
the late time (t — o00) structure factor for a conserved order parameter remains identical to Eq. (4.25),
yielding Eq. (4.26) for the strength of noise source in this case as well

Another important feature of the addition of noise to conserved, and non-conserved, dynamics is that
it assures that systems evolve to an equilibrium defined by the probability P[¢] given by

P[(b] o e_(F[¢]_Fo)/kBT (429)

where F), is some reference free energy.

4.7 Stability and the Formation of Second Phases

With a better understanding of the role of thermal fluctuations around equilibrium, it is instructive to
return to the issue of stability of an initial phases cooled below a transition temperature during a phase
transformation. This topic was examined qualitatively in sections (2.2.3) and (2.2.5).

4.7.1 Non-conserved order parameters

Consider a general bulk free energy f(¢,T) and a system prepared in a state ¢ = ¢dmin and which is
initially a minimum of the free energy, and which is then lowered below a transition temperature. To
make matters concrete, two cases are examined. The first involves a second order phase transition,
where a system in a state with ¢ = 0 is the minimum of the free energy defined by Eq. (2.38) above
T. (disordered phase) and becomes a maximum below the critical temperature T, (see Fig. (2.3)). The
second example considers a first order transition described by the free energy in Eq. (2.50) where the
disordered phase with ¢ = 0 that is stable above a transition temperature, 7,, becomes a meta-stable
below T,,, (see Fig. (2.4)). In both cases, the initial state satisfies 0f/0¢|4,., = 0 after being cooled
below the transformation temperature.

Consider, next, a small perturbation of the initial state, ¢ = ¢nin + d¢. The dynamics of the
perturbation §¢ are determined by substituting ¢ into the model A dynamics of the Eq. (4.18). Expanding

1Strictly, when considering fluctuations of conserved order parameters, we should linearize around the equilibrium state,
¢eq, which is not in general ¢,in. However that won’t change the fluctuation theory derived above.
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the non-linear terms of the free energy to second order in d¢ yields,

26 o, Of af

W =M (WOV 6¢ - a¢ min - 8¢2 min 6¢> +€
- M (W3v2 - f”) 56— Mf +¢ (4.30)
- M(W3v2—f”)5¢+§ (4.31)

where the bulk free energy f(¢,T) has been expanded to second order in §¢ and substituted into
Eq. (4.18). The notation f’ and 1" denote the first and second derivatives of f (), respectively, evaluated
at the initial state, which is assumed to be an extremum of the free energy, i.e. f/ = 0. Employing once
again the Fourier transform technique, Eq. (4.31) can be transformed into

33,

_ 27.2 " n £
oo = M (WK 4 f) 0+ & (4.32)
the solution of which is
22 ” ~ t 21.2 AV
5&]{) _ €_M(W0k +f )t <5¢k(t _ O) _|_/ eM(Wok + £t gk(t/)dt/> (433)
0

When the coefficient v, = W2k? + f in the exponential of Eq. (4.33) becomes negative, d¢y will
always become linearly unstable. This happens fastest for the £ = 0 mode (i.e. the longest wavelengths)
and only when f// < 0, due to the sign of the argument of the exponential in Eq. (4.33). This situation
is precisely satisfied by a first or second order phase transition when quenching (e.g. cooling) below
the spinodal line of the phase diagram, which is defined by f” < 0. For example, in a second order
transformation, right at the critical temperature f” = 0, which is a saddle point in the free energy
landscape of Fig. (2.3). Infinitesimally below the critical temperature, thermal fluctuations will cause
a range of long wavelengths to become linearly unstable, leading to a separation of ¢ into one or both
of the free energy minima, described by the phase diagram. In a first order transition, f// > 0 in the
initial states of the system (assumming these we prepared away from the critical order parameter). This
corresponds to a state of a system that is stable above the transition temperature and remains meta-stable
below the transition temperature, Th;. This is a feature characteristic of a first order transformations.
As discussed in section (2.2.5) this situation requires thermal fluctuations to overcome an energy barrier,
through nucleation. Cooling sufficiently below Tj; will ultimately lead to a situation where f” <0, in
which case the first order transformation no longer requires nucleation to proceed.

4.7.2 Conserved order parameters

The stability of a conserved order parameter can be more complex than a non-conserved one since the
average of the order parameter must be preserved when crossing below the transition temperature. An
instructive example is found by considering a binary mixture described by the free energy in Eq. (2.38),
with a spinodal phase diagram such as that in Fig. (2.3). Consider a specific alloy with a non-zero initial
relative solute concentration (¢, # 0), cooled just below the co-existence region of the phase diagram.
If the system is cooled below the coexistence but above the spinodal line (defined by f” = 0), thermal
fluctuations are required to nucleate and grow a second phase in accordance with conserved dynamics.
If system is cooled below the spinodal line, phase separation will commence without nucleation. In

38



both cases, growth of the second phase domains will be governed by conserved dynamics, which implies
that both cases the final values of ¢ in the respective parent and daughter phases will be set by the
Maxwell equal area construction, also known as the common tangent construction. Contrast this to a
first order transitions involving non-conserved order parameters (e.g. solidification), where the stable
high temperature phase can evolve completely into the stable (T' < T,,,) phase.

The linear stability of meta-stable of an initial phase evolving by conserved dynamics proceeds anal-
ogously to the section (4.7.1). Starting from Eq. (4.27), the linearized dynamics of §¢ in Fourier space
become .

Aoy,
ot

— _MK? (W3k2 + f”) Son + (Mf' + ék) (4.34)

the solution of which is
- 1" t
50— oMk (W2 ) <6¢k(t0)+/ ME22(W2K2+ ")t <§k(t’)+Mf)dt’> (4.35)
0

The stability coefficient to consider is now v, = k2(W2k?+ f ”). Note also that in this example the initial
state, = @y, is not necessarily an extremum of the free energy f(¢,T") and so 9f/I¢|,, # 0 in general.

Unlike the case of non-conserved dynamics the £k = 0 mode is always marginally stable. It is a finite
wavelenumber k. = \/—f" (¢o)/v2W, that becomes linearly unstable fastest in this case, with its growth
rate depending on f”(qﬁ = ¢,). For example, for the free energy f = as(T — T.)¢?/2 + up* /4,

Ve = ME* (W2k* 4+ a§(T — T..) + 3ug?) (4.36)
and the k. mode will become unstable when

Su s
o o
as

T<T,=T,— (4.37)

which also precisely coincides (or defines) the spinodal temperature in Fig. (2.3b).

4.8 Interface Dynamics of Phase Field Models (Optional)

Before Model A and Model B gained popularity for their role in more complex phase field models for
solidification and related microstructure problems, they were regularly used in the condensed matter
theory to derive governing equations of motion for interfaces between phases. While these topics are
somewhat removed from the main thrust of this book, it is instructive to briefly reviewed some of the
more interesting of these topics, without going into the more difficult mathematical details. The interested
reader is invited to consult Ref. [64] and references therein for further mathematical details.

4.8.1 Model A

Consider for concreteness zooming into the interface of a large magnetic domain evolving under Model
A dynamics. Let the position of the interface be denoted by the function h(zx,t), where the curvature of
the domain is gradual enough that the position of the interface can be quantified by a one dimensional
variable z, as illustrated in Fig. (4.3). The two phases are characterized by the order parameters ¢,
(spin up) and ¢_ (spin down), which are defined as the minima of the bulk phase field free energy defined
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by f = Hg(¢) + fu(¢), where H is the nucleation barrier between ¢4, g(¢) is a symmetric double-well
potential with minima at ¢ = ¢4+ and has a barrier of unit magnitude between the two phases, and f3 is
a non-symmetric part of the free energy, which we assume also has local minima at the states ¢ = ¢+. fj
may also depend on magnetization (or temperature if this is applied, for example, to crystal growth).

'

y u=(y—h(x.t))cos(6)

n
(x.y) §

&)

L J

X

Figure 4.3: An interface separating two magnetic domains. The function h(x,t) measures the distance
to the interface from some reference line. It is assumed that the interface is sufficiently gently curved to
be able to consider the portion of the interface in this one dimensional fashion.

The dynamics of the ¢ field for this system will be assumed to be described by model A, written here
in the dimensionless form
dp  OF dg Ofs

_ PAv2 e A 7

where 7 = 1/(MH), Wy = W,/VH, fr = f,/H and 1 = 7€, with M the mobility and W, is energy
scale of the gradient energy coefficient in the free energy functional. The length W, sets a characteristic
length of the interface and 7 is a characteristic time scale of the model. The variable n(Z, t) is a re-scaled
stochastic noise variable. It will be assumed that the bulk part of the free energy, fi(¢), can be written
as

f+(9) = €f () (4.39)

where € = Wy /d, < 1/H is assumed here to be a small parameter, with d, the capillary length 2. By
scaling the bulk free energy with ¢, the thermodynamic driving force effectively goes to zero when the
interface becomes sharp or equivalently, when the energy barrier between the two phases becomes very
large. The parameter € thus controls the deviation of the ¢ field from its form corresponding to a flat
stationary planar interface, denoted here as ¢g. In the remainder of this subsection an analysis of the
model A equation will be performed with the aim of deriving an equation of motion for the interface
h(z,t) between ¢4 and ¢_ phases (illustrated in Fig. (4.3)).

2The significance of this specific scaling will be dealt with again in later chapters and Appendix (A), when a more
complex interface analysis of a model A type equation coupled to a model B type diffusion equation is performed to derive
the sharp interface sharp interface boundary conditions of solidification and second-phase formation.
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It is instructive to transform the co-ordinates of Eq. (4.38) into a co-ordinate system that is local to
the interface and which measures distances along to and normal to the interface. The co-ordinate along
the arc of the interface is denoted s while that normal to the interface is denoted u (See Fig. (C.1) for
an illustration). The transformation of the gradient squared and time derivative operators in interface-
local (u, s) co-ordinates is discussed in section (A.2) of Appendix (A) and Appendix (C.2) (as well as in
[64]), and will not be reproduced here. Specifically, the transformation of Eq. (4.38) to local interface
co-ordinates becomes

- %—V% ¢ — w2 82¢+ K @_’_ 1 (‘927¢_ UK s @
ot "ou s ) T P\ou? " (14uk)du  (14uk)2dsz (14 uk)3 ds
d:¢ in (u,s) co—ordinates V2¢ in (u,s) co—ordinates
dg(¢) _ df(9,¢)
10 7l (4.40)

where k is the local interface curvature and the notation x s denotes differentiation of curvature with
respect to the arc length variable s. Similarly s is the time derivative of the local arc length at position
on the interface with time.

It is useful to examine the structure of ¢ near the interface by re-scaling the normal co-ordinate via
& = u/W, and the dimensionless arc length via o = (¢/Wy)s. In terms of these definitions, curvature is
re-scaled by & = (W, /e)x. Meanwhile, the characteristic rate of the kinetics of atoms across the interface
is given by v. = Wy /7, which implies that the characteristic time for fluctuations of the interface is defined
via t. = d,/v. = 7/e. Furthermore, the characteristic speed of motion of the interface over the scale of the
capillary length is defined by vs = D/d, = ev., where D = Wf, /7 is like an effective diffusion coefficient
of model A. In terms of ¢, and vy, a dimensionless velocity is defined by @, = V,,/vs = 7/(Wye)V,, and
a dimensionless time by ¢ = ¢/t. = (¢/7)t. Equation (4.40) can now be re-written in terms of (&,t,7,).
Retaining only terms up to order € in the resulting scaled equation gives

2
e% - 8¢ +e 90 9¢ @ + ER@ _d99) _ GM +ev (4.41)
ot 85 Ot 9o 2 103 do do

It has been assumed without loss of generality that n = ev where v is a noise source or order one.

It will be assumed that ¢ can be expanded in a so-called asymptotic series in € according to

¢(§7 g, E) = ¢O(§) + 6@51 (5, g, t_) T (442)

where the ¢y solution is, by construction, only a function of the normal co-ordinate since it represents
the solution across a flat stationary profile. The expansion in Eq. (4.42) is substituted into Eq. (4.41).
Collecting the terms not multiplying by e (referred to as the "order €® terms) gives

9*¢o

T g (¢0) =0 (4.43)

Similarly collecting the e terms leds to an equation for the perturbation ¢,

o 09
5o~ 9 (G081 =~ +R) 2

the first equation provides the so-called ”lowest order” solution of the phase field ¢. It suffiices to recognize
that it is some analytical solution based on the double-well function g(¢) and it need not be explicity

+ f.o(d0) + (4.44)
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solved here. Equation (4.44) can be simplified by multiplied by 0¢o/d¢ and integrated from § — —oo to
00, giving

0080 v P - 80 ? OQao ooao
/_Oo 3"2 c(%)dfz—(vnm)/_oo(gz) d§+/_oo a‘i f,¢(¢0)dg+/_oo gzudg (4.45)

where £ = O¢¢ — g (¢0) and g () denoting the second derivative with respect to ¢. Integrating the
integral on the left hand side of Eq. (4.45) by parts gives

> 9, > 9 0? /
| Sectonas= [~ S (T8 g/ (ow) de =0 (1.46)

based on Eq. (4.38).
Starting from Eq. (4.45), with the left hand side set to zero, leads to the following relation between
the the local normal interface velocity V;, and curvature,

V= —Dk+ A+ (4.47)

where D = W(%/T, A = v Afyfog, with Afy = fi(oy) — fx(p-), 04 is given by Eq. (3.20) and
¢ = (ve/oy) [7o n(u,s,t) Dudodu is just a re-scaled stochastic noise term.
The link between cartesian co-ordinates and the interface-local co-ordinates (in terms of which x and
v are defined) is made by defining the normal distance from the interface through the co-ordiate u given
by
u= (y — h(z,t))cos(9) (4.48)

where 6 is the angle that the normal to the interface (i) makes with the y-axis in Fig. (4.3). The co-
ordinate u to any point depends on the position on the arc of the interface from which u is measured.
In this simple treatment, where the interface is assumed to be very gently curved, the arclength variable
(s) is replaced simply by . Thus v = u(z,t). (For a more thorough treatment of co-ordinates local
to the interface, the reader is advised to review section (C.2) ). Approximating the normal velocity by
V,, = —0u(x,t)/0t gives,

Oh/ot | h(@n/0) (92h/0x0t)

Vo = 2
(1+((‘3h/(‘3x)2) 1+ (0h/0x)

(4.49)

From basic calculus, it is found that for a gently curved interface, curvature is related to the interface
position h(z,t) by
0%h/0x?

. (1+ /o )3/2

The assumption of small curvatures makes it possible to neglect the second term in Eq. (4.49), which is
third order in the gradients of h. Substituting the resulting expression and Eq. (4.50) into Eq. (4.47),
and expanding the radicals to first order in (0h/0z)* gives,

(4.50)

o oh (0
ot~ oz 2

2
835) +C4A (4.51)
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The last term (A) can be removed if a new height function h(z,t) — h(x,t) — At is defined. Equa-
tion (4.53) is the famous Kardar-Parisi-Zhang (KPZ) equation used to describe interface roughening in
many phenomena, ranging from the growth of thin films to smoldering combustion fronts in paper [169].
Interestingly, for a quench just below the transition temperature, A ~ 0 and Eq. (4.47) becomes the
Allen-Cahn equation for curvature driven interface growth. In this limit the KPZ equation becomes

oh 0h
—=D— 4.52
ot~ Dozt (4:52)
the form of which can be derived (in 2D) from the free energy functional H
- v S o2 2=
H=| {JIVh@nP}da (4.53)

area

where v is the energy per unit length or area (3D) of interface. This implies that domain coarsening
of a second order phase transformation, near the critical point, is essentially entirely driven by surface
curvature minimization. Moreover, the absence of any polynomial terms makes it possible to move
interfaces on all length scales with little energy. In Fourier space Eq. (4.52) has the solution h ~ e™¢t,
. . . . . 2

where ¢ is the wavevector. This leads to domain size scaling of the form ~ (qtl/ 2) .

4.8.2 Model B

The dynamics of an interface evolving under model B dynamics is considerably more complex then those
of model A. Since model B is conservative, interface motion must evolve in a coupled fashion with the
diffusion in the bulk phases. The complete description of model B interfaces constitutes what is referred to
as a ”sharp interface” model. These types of models comprise two boundary conditions relating the local
interface velocity with local interface curvature. The boundary conditions are self-consistenlty coupled
to a diffusion equation for the order parameter in the bulk. Models such as these are commonly used
to describe diffusion limited growth of interfaces in pure materials and alloys. The first of the boundary
conditions is the well-known Gibbs-Thomson condition, which relates the change of concentration at
the interface from its equilibrium (i.e. stationary, flat interface) value to the local curvature (k) and
normal interface velocity (V,,). The second boundary condition is a relationship between V;, and the net
mass flux crossing an interface along the normal direction. For thermally controlled microstructures, the
appropriate sharp interface equations are given by Eqs. (1.1). This is discussed further in Chapter (5).
In alloys, the appropriate sharp interface model are are reviewed in section (6.2.2) (see Eqgs. (6.3)-(6.5)).
Their derivation from model B is shown in Ref. [64] in using a so-called first order perturbation analysis.
They are also derived in Appendix (A) using a more general, second order perturbation analysis of an
alloy phase field model, which admits both compositional and solid-liquid interfaces.

4.9 Numerical Methods

From the theoretical discussion thus far it should start becoming clear that the vast majority of non-linear
models of any importance can be solved exactly analytically. The machinery of numerical modeling is
required to explore its full range of complexity. This section introduces some numerical procedures for
simulating model A and model B type equations studied in this chapter. It is recommended that readers
without previous experience in computational modeling read appendix (B) before reading the sections of
this book dedicated to numerical simulation. For simplicity only two spatial dimensions are treated. The
transition to three is presicely analogous in most cases.
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4.9.1 Fortran 90 codes accompanying this book

The CD that accompany this book contains codes (and references to codes) for reader to practice and
learn from. The names and directories where these codes are found in each chapter, at the corresponding
section dealing with numerical implementation.

Fortran 90 codes used for the simulations in this section are provided in subdirectories " ModelA” and
"ModelB” of the folder ”codes”. The codes modules comprise a main program filed named manager.f90
and separate modules for other tasks. For example, all variables are defined in the module variables_mod.f90
while printing is done in the util_mod.f90 module. The solver code is in solver_mod.f90. Both codes read
input before commencing the simulation from a file called ”input”, whose entries have been defined as
comments in the input file itself. The code has been tested on a MacBook running Mac OS X version
10.5.6. It uses standard Fortran 90 and should run on any platform. It comes with a file called ”Make-
file”, which deals with the details of compiling and linking all program modules. To create an executable,
simply type "make” in the same directory where the code field and ”"Makefile” reside. Be sure to replace
the first line of the Makefile (i.e. F90 = /sw/bin/g95) with a path telling the operating system where
your fortran compiler is located. Finally, a Matlab M-file called surff.m is also included in the code
directories. This enables surface plotting to visualize a field of the form ¢(,j) in 3D. The M-file is run
by typing surff(dim, skip, nl,n2) in the Matlab command window, where dim = 1 reads the first column
of the output file file produced by the code, skip is the number of discrete time steps between printed
output files and nl,n2 are the starting and ending discrete time steps to plot, one at a time. All plots
are shown momentarily and then saved to a jpeg file labeled by the corresponding discrete time. Be sure
to set the path in Matlab to where the output files created by the solver codes reside. If this all sounds
like a foreign language to you, consult with your local system administrator.

4.9.2 Model A

Model A is simulated numerically by approximate ¢(z,y,t) as a discrete representation that ”lives” on a
rectangular grid of points labeled by an index i =1,2,3,--- and j = 1,2,3,--- in the x and y directions,
respectively (See Fig. (B.1) for a 2D schematic). Values of ¢(x,y,t) on this grid are represented on a
computer by an array (matrix) of real numbers. The distance between grid points is assumed to represents
a small distance Az in the a-direction and Ay in the y-direction. (In most of what follows it is assumed
that Az = Ay for simplicity.) Similarly, time is made discrete by introducing a numerical length scale At,
labelled by the index n = 0, 1,2, - - -. Dimensional time is measures as t = nAt and space by z = (i—1)Axz
(same for y). As computer memory is always limited, a grid can only represent a domain of length L in
each spatial direction. This sets the maximum number of grid points in the numerical array to N = L/Ax
(it will be assumed for simplicity that L is chosen to be a multiple of Ax).

The simplest way to advance the solution of Eq. (4.16) forward in time is known as an ezplicit method.
In this method the solution of ¢ at time ¢ = (n + 1)At is determined entirely from that at t = nAt,
starting with an initial condition of ¢((i — 1)Az, (5 — 1)Ay,0) over i,j = 1,2,3,---N. 3 The discrete
equation used to update model A on a uniform rectangular grid is derived in Appendix (B), re-written

here as N ) "
G G) = 676 0) + 5y 207 ) — af P

3 36 (4.54)

3For simplicity ¢((i—1)Az, (j—1)Ay, nAt) will simply be written as ¢™ (4, 7)) where the latter form is actually referencing
the discrete array representation of ¢(z,y,t) at the discrete time step n. Moreover, since fortran does not have a symbol
for ¢, the nottion "PSI” will be used in the code itself.
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where the scaled variables Z = x/W,, t = Mt have been assumed. The notation A2¢" (i, j) is short hand
for the discrete Lapacian operator 4

A?¢™(i,) = @i+ 1,7) + d(i = 1,5) + (i, j +1) + ¢(i,j — 1) — 46(i, j) (4.55)

Equation (B.5)) can alternatively be used for a more isotropic Laplacian. The difference of the two
laplacian formulae is basially one of accuracy and becomes irrelevant as the numerical mesh spacing Ax
becomes very small. Of course, part of the challenge of numerical modeling is to accurately simulate
phase field models with as large a Az as possible. The choice of numerical laplacian must be guided by
the type of equation being modeled and the degree of error that is acceptable.

Equation (4.54) comprises an iterative mapping and, as such, is only stable for sufficiently small time
steps. From Appendix (B) it can be deduced that the time step in the explicit time marching algorithm
of Eq. (4.54) is limited (in 2D) by the restriction

~2
Af< BT (4.56)
4
The physical interpretation of this limitation is that it is not possible to advance a solution explicitly faster
than the inherent diffusion time of the problem. This is seen clearly by writing Eq. (4.56) in dimensionless
form as At < Az?/(4W7 /7). Because the criterion in Eq. (4.56) come from linear stability theory (i.e.
it ignores the non-linear term), it is advisable to use a At sufficiently smaller than the prescription in
Eq. (4.56) to avoid stability issues.
A basic algorithm for solving Model A numerically is shown in Fig. (4.4). There are four basic steps

Model A pseudo code

Define and initialize variables

|

Set initial conditions of PSI array

|
!

Update PSI from previous time

1 Increment discrete

' Print out field and other relevant | time counter

information measured from
PS| array
|

L. o

END

Figure 4.4: Flowchart of algorithm to simulate Model A.

in this simple code design. The first is to define all relevant variables, such an an N x N array to hold the

4Where the Az2 has been omitted from Eq. (4.55) since it already appears in Eq. (4.54)).
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values of the phase field (call ?PSI” here), the mesh spacing (Az, called "dx”), model parameters, etc.
Parameters that change are best to be input at run time, either from the terminal or, a better practice,
to have them read in from a file. After that the initial conditions are to be set on the array PSI. The
third stage is to begin the ”time marching” forward in time using Eq. (4.54). This involves a ”do-loop”
structure in each of the indicies ¢ and j of the array PSI(i,j). The final stage is to print out the field PSI
and any quantity calculated from it. The last two steps are embedded in a time loop that repeats this
excerise as many times as re needed to reach a certain point in the evolution of the ¢ (PSI) field. Note
that it is wise not to print field configurations at every time step. As the array sizes become larger, the
output files start to become huge and quickly fill up disc space. This is a trivial point that, however,
nearly every first time graduate student makes when they write their first code. In general learning good
data management will serve one in good stead later on.

Care must be taken in properly implementing boundary conditoons in the third stage of the algorithm
of Fig. (4.4). For example, if the array PSI is defined from 1 to N in ech index 7 and j (e.g. Real*8 :: PSI(
1:N,1:N)in F90 syntax) , the code will stop working properly when, at ¢ = N or ¢ = 1, the code asks
for the entry PSI(IV + 1, 5) or PSI(0, j) for some value of j. This will occur due to the laplacian formulae
Eq. (B.5) or Eq. (B.5), which involve nearest neighbours of the point 4, j. The resolution to this problem
depends on the type of boundry conditions to be implemented. If periodic boundry conditions are to be
used, the system evolves as if it is on a 2D sheet wrapped arund on itself. Thus, what goes out one end
re-emerges on the other. The quickest and simplest way to implement periodic boundry conditions is to
define the array PSI as Real*8 :: PSI( 0: N + 1,0 : N 4+ 1). The physical domain on which Eq. (4.54)
is defined is still 1 : N, 1 : N. However, before each discrete time step begins, the column ¢ = 0 is made
a replica of the comumn i = N, the column ¢ = N + 1 is made a replica of ¢ = 1, and so on. In other
words, the following modification is made to PSI before each time step commences,

PSI(0,:) = PSI(N,:)
PSI(N +1,:) = PSI(1,:)
PSI(:,0) = PSI(:, N)
PSI(:, N +1) = PSI(:, 1) (4.57)

Conversely, if one wishes to implement zero flux boundry conditions, the following mapping is made prior
to each time step,

PSI(0,:) = PSI(2,:)
PSI(N +1,:) = PSI(N — 1,:)
PSI(:,0) = PSI(;, 2)
PSI(;, N + 1) = PSI(:, N — 1) (4.58)

It is clear that where a so-called centered difference is used, Eq. (4.58) gives a zero flux at the left and
right ends of the system since, for exampe, 0¢(i,j)/0x ~ PSI(i + 1,j) — PSI(i — 1,7) and analogously
for the y direction. If a specific flux is to be specified, then 2AxJpc is subtracted on the right hand side
of the appropriate line of Eq. (4.58), depending on which edge the flux is coming in from. This case is
discussed further in the next chapter. Note that this is not the most accurate way to implement flux
boundary conditions. They will do to et started. For more advanced methods the reader is referred to
more comprehensive texts on numerical modeling.

A simulation of model A is shown in Fig. (4.5). The order parameter ¢" (i, j) is evolved by simulating
explicit finite difference algorithm discussed above. The domain for the simulation on the left frame is
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1000 x 1000 = 10° grid points. Periodic boundry conditions were used. The field ¢°(i, j) was initially set
to a gaussian distributed random variable with zero mean and a standard deviation of 0.001. In other
words, ¢°(i,7) exhibits only small deviations from zero and the average (¢°(i,j)) = 0. The right frame
shows a time slice in 400 x 400 system. The random initial conditions of the smaller simulation were set
using the same nitialization seed of the random number generator used in the larger system. The free
energy density of Eq. (2.38) was used for f(¢) with as = —1, a4 =1, Wg =0.25, At = 0.1 and Az = 0.8.
Blue regions represents one minimum of f(¢) and brown the other.

Figure 4.5: (left) Simulation of model A on a domain of size 1000 x 1000. (Right) Analogous simulation
of model A on a 400 x 400 domain (whose dimensions are indicated in yellow on the left frame, for
comparison). Blue represents one minimum of the double well potential f(¢) and brown the other.

The two frames of Fig. (4.5) appear self similar to each other, which means that the zoomed in region
of the boxed portion of the left frame is a statistical replica of the larger domain. Since an initial state
close to ¢ = 0 is unstable below the transition temperature, it is equally likely that some domains will
”fall into” one minimum of the double-well free energy density and some in the other. Thus, it may
be expected that ¢ will evolve such that its average (¢) = 0. This is not the case in practice, however.
Figure (4.6) plots (¢) versus time for systems comprising 250 x 250, 400 x 400, 1000 x 1000 and 2000 x 2000
mesh points on a square grid. It is clear that for the smaller system sizes, the magnitude of (¢) drifts,
asymptotically attaining a constant value, the latter of which approaches zero very slowly with increasing
system size.

The reason for this so-called ” finite-size effect is better understood if one considers that Model A
does not conserve (¢). As a result there there can be a drift as a function of time as domains try to
minimize their surface area. Physically, this occurs because the selection of domain sizes is cut off for
sizes greater than the size of the system. In other words, the distribution of domains that would give
an average of zero is cut off due to the finite size of the simulation domain. Only in the thermodynamic
limit of infinite —or at least very large— system sizes will the asymptotic average (¢"(, 7)) go to zero, as
seen in the 2000 x 2000 simulation. In the case of a ferro-magnet this is why a small bias field is required
to selet a net magnetization.

Theoretical work by Ohta, Kawasaki and Jasnow [162] has shown that in model A the system becomes

47



‘ : _ ; ; ; ‘ : |
03 o -
e
@ - // 4
<I32 : //I/N: - 1
N N=1000 3
0.1 /
,/ A
N & N=2000 |
—
01 RHHK =
o e —
e ——
02 N=400 —~——ee
03 =1
M | | 1 | 1 1
0 20000 40000 60000 |0000 le+05

Time step

Figure 4.6: System size dependence on average of the order parameter ¢ for Model A simulations on a
of 2502, 4002, 6002 and 10002 grid points. Simulations were seeded with random fluctuations using the
same random number seed. The 6002 and 10002 cases were run a little longer to show a clearer saturation
to a smaller value than the other two systems.

self-affine. This property is characterized by the structure factor (see Eq. (4.23) in section (4.6.1), and
section (C.1) for definition), which can be shown to obey the following relation,

S(q,t) = 928 (qt1/2) (4.59)

where ¢ = |g] is the wave vector and S(u) is a wuniversal function that is independent of the specific
form of the free energy entering model A. These matters are beyond the scope of this book and will
not be discussed further here. The interested reader is referred to the original reference cited above and
references therein.

4.9.3 Model B

Numerical simulation of model B follows requires an additional step in the algorithm discussed above
for model A. Specifically, a two step approach is now required in the update step in the pseudocode of
Fig. (4.4). The order parameter update step becomes

) = 67(0,) + g B2 ) (1.60)

AV

where an additional step (i.e. do-loop) must be added, prior to updating ¢**1(i, j), which evaluates the
array p"(i,7) (MU(i,j) in fortran syntax) for the n'" time step representation of the discrete chemical
potential. The array for p™ (4, j) is explicitly computed by

) = - D09 8f<¢;$,j>>) (4.61)

48



As with model A the mapping in Eq. (4.60) is only stable below a threshold time step. In two dimensions,
the the restriction on the time step is given by

_ Azt
At < 3 (4.62)
This is more severe than the case of model A due to the Az*. The reason, as shown in Appendix (B),
is that the extra Axz? emerges is due to the extra laplacian in the conservation law of model B. Equa-
tions (4.60) and (4.61) can be integrated effectively with the numerical Laplacian in Equation (B.5)) (or
using finite volumes, discussed in Section (B.2)). Both methods will yield (¢(Z,t)) = 0, withing machine
precision, for all times, if {(¢(Z,t = 0)) = 0.
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Chapter 5

Introduction to Phase Field
Modeling: Solidification of Pure
Materials

This chapter extends the basic phenomenology of phase field theory into a more formal methodology
for modeling isothermal and non-isothermal solidification in pure materials. Solidification serves as an
important paradigm for many first order phase transitions and is the principal phenomenon describing the
first stage of nearly all microstructure formation in metals. Solidification is also one of the most extensively
studied topics using phase field methodology in the scientific literature. In pure materials, solidification
proceeds through the competition between thermodynamics —driven by the local undercooling of the
liquid ahead of the solidification front— and the ability of the system to diffuse latent heat of fusion
(solidification is an exothermic reaction) away from the solid-liquid interface. Capturing the physics of
this phenomenon thus requires combining an equation that describes the change of order to one that
describes the diffusive processes accompanying solidification, such as in heat conduction in this case. The
chapter starts off by introducing the concept of order parameters in crystal phases. Following this, the
phenomenology of a phase field model for solidification of a pure material is derived.

5.1 Solid order parameters

Figure (5.1) shows a schematic of a cut through a hypothetical solid in co-existence with its liquid. The
oscillating curve denotes the time-averaged atomic number density. This is the field that an atomic force
microscope might reveal if imaging a hypothetical 1D sold. The decay to a constant density in the liquid
occurs over a correlation length Wy, which is atomically diffuse in most metals. The atomic number
density can be seen as a temporal or ensemble average ' of the instantaneous solid density, p(%,t), i.e.

1This assumption assumes that the system is ergotic. This implies that averaging a quantity in time as the system traces
a trajectory in its phase space —of co-ordinates and momenta- is equivalent to averaging the same quantity over the system’s
equilibrium distribution [146]. This assumption usually satisfied by most systems in the thermodynamic limit but it is not
always for low dimensional dynamical systems.
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Liquid

Solid

Figure 5.1: Schematic of the atomic density field of a 1D cut through a solid (oscillating line) in coexistence
with liquid (constant). The decay of oscillating density to a constant occurs over a length scale W

(p(Z, 1)) time = (P(Z,t))ensemble- The instantaneous density itself is given by the expression.

N
p(f, t) = Z 6(5_ fn(t)) (51)
n=1

where 0(Z) is the Dirac delta function, N is the number of particles in the solid and Z,(t) denotes the
position of the n'* particle. The delta function has units of V=1, where V is the volume of the system.

It will be assumed, for simplicity, that the density field p(Z,t) can be represented by discrete Fourier
transform,

p(Z,t) = Z pa(t) e 0% 4 ce. (5.2)
é

where G defines the principle reciprocal lattice vectors of the solid and c.c. the complex conjugate 2. To
simplify the math, the complex conjugate will be assumed but not dealt with explicitly in the derivation
iG-@

below. The Fourier transform p5 can be obtained by multiplying Eq. (5.2) by e and integrating over

the volume of the solid,
o= [ olate) é9%ay (5.3)

(where the time label has been suppressed for simplicity). Substituting Eq. (5.1) into Eq. (5.3) gives pg
in the form,

_ N
. P iG-27, (t)
PG = ngl e (5.4)

where p is the average atomic number density. Substituting Eq. (5.4) into Eq. (5.2) gives an alternate

form for the density field,
_ N
P iGan(t) | —iG-&
p(Z,t) = v Z (nzl e > e (5.5)
a =

20ne can also begin by assuming that time average of the density is periodic and follow similar steps as above and arrive
at the same answer
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The phase factors (complex exponential terms) in the round brackets of Eq. (5.5) are called structure
factors. These are intimately connected to the solid’s crystalography and its order parameters.

This significance of the structure factors in Eq. (5.5) can be made more concrete by using Eq. (5.5)
in the definition of the time-averaged density,

_ N L L
<p(fv t)>time = <P(f7 t)>ensemble = % Z <Z 67;G.In(t)> GilG.m (56)
G

n=1

e

The quantities ¢z define the order parameters of the solid —one for each reciprocal lattice vector G. In the
solid, the dot product G- Zn(t) will take on multiples of the same values along given directions and so the
average will collect non-zero contributions from all n, since atoms are situated near ideal crystallographic
positions; this is like constructive interference. In the liquid the phases G- Zn (t) will vary randomly and
the phase factors will thus destructively interfere to make the ensemble average of structure factors zero.
As an example, consider a one dimensional solid, i.e.

(9 = feos (22 4.9+ s (225 + 90 ) (5.7

where G = 27m/a are the 1D reciprocal lattice vectors (m is an integer), a is the lattice constant and
r, = (n+ &)a, with n being some integer associated with the n'" atom in the crystal. The variable &
represents a Gaussian random number with zero mean. It represents a source of noise causing atom n
to randomly vibrate about the position x = na due to temperature fluctuations. Splitting up the sin
and cos functions, to lowest order (sin(2rmg&)) = 0 and (cos(2rm&)) = 1 since (§) = 0, and noting that
sin(2rmn) = 0 and cos(2rmn) = 1 gives,

(eié'fﬂ = cos(2mmn){cos(2rm&))+sin(2mmn)(sin(2rms))
+ dcos(2mmn)(sin(2rm&)) +sin(2mmn){cos(2rms))
= 1 (5.8)

In the liquid, the position z, will itself be an uncorrelated random variable, unlike in the solid where
it is always near a lattice position. As a result ( eié'fﬂ) = 0 in the liquid. As a result, the parameter
s = (pg) = . eié‘a?") is a constant in the solid (¢ ~ N, since there are N atoms in its sum) and
decays to zero in the liquid. Its behaviour is illustrated schematically in Fig. (5.2). It is noted that the
G =0 is treated separately in the outer sum of Eq. (5.6). It merely adds a constant N to the sum, since
the phase factors ¢iGn are always zero for the G = 0 mode.

Taking the above considerations into account, the ensemble or time averaged atomic number density

field in Eq. (5.6) can be written in terms of ¢z as
- _ 1 —iG-&
(p(Z,t)) =p |1+ NﬂE Pge (5.9)

In general the average density p in changes from solid to liquid. The association of this quantity with
the symbol ¢ is intentionally made to associate it with the order parameter of Ginzburg-Landau theory
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Figure 5.2: Schematic of solid order parameter corresponding to a reciprocal lattice vector G.

studied in previous chapters. In the examples examined thus far, only one real order parameter was
considered. The above derivation shows that, in fact, multiple complex order parameters are required
to describe a solid completely, due crystallographic properties of crystals. The density in Eq. (5.9)
represents the course-grained density filed, where spatio-temporal variations on phonon time scales have
been "washed” out by the averaging process. The order parameters ¢ thus vary over length scales that
are long compared to the solid liquid interface width, and change on long time scales compared to those
involved in lattice vibrations. This density can loosely speaking be considered as a pseudo-equilibrium
density on mesoscopic time scles.

5.2 Free Energy Functional for Solidification

Statistical thermodynamics provides a formalism called classical density functional theory through which
a free energy functional for solidification can be developed in terms of {p(#,t))[177, 71, 111]. The basic
idea is that the free energy expanded in an infinite functional series of the form,

F(p(@)), T] = Fret [p] + Floc(p) + /V<p(f)>0(2)(\f —&){p(@)) + - (5.10)
where Fief[p] is the reference free energy of a liquid or gas phase with average density p and evaluated
at solid-liquid coexistence. The free energy Flo.(p) is a local function of the density, while the function
C®@(|Z — &']) is the so-called two-point direct correlation function [111]. Loosely speaking, this function
represents a statistical averaging of all two-body interactions in the system. Equation (5.10) is a truncated
density functional, cut off at second order. By specializing C'?), various atomic scale phase field theories
of crystallization can be obtained. For example, the form C(?) = a +bV?2§(F — ) + V*6(ZF — ) gives rise
to a so-called phase field crystal (PFC) model, an adaptation of the well-know Swift Hohenberg equation
first used by Elder and co-workers [65] to describe elastic and plastic phenomena in metallic systems.
This is a phase field model whose order parameter varies of atomic scales, and can self-consisently model
elasticity and plastic properties of solids. Phase field crystal theory will be the focus of chapters (8) and
(9.1).

It is possible to homogenize or ”course-grain” the free energy of Eq. (5.10) into an effective free energy
that is valid on scales much larger than a single atom but still small enough to resolve metallurgically rel-
evant microstructures. Loosely speaking, course graining proceeds by assuming density can be described
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by Eq. (5.9), which is then substituted into Eq. (5.10). It is then assumed that the order parameters ¢
vary on long length scales compared to the periodic variation of e’“*#. This makes it possible to reduce,
or “coarse grain” the free energy in Eq. (5.10) into a new form that depends only on the complex order

parameters ¢5. This coarse-graining procedure is denoted symbolically as

F[(p(@)), T) = F [{96},T] (5.11)

A more detailed discussion of the properties of F [{(bé},T] will be given in chapter 8. The basic idea
for now is that F [{(;Sé},T] can be seen as a type of Ginzburg-Landau free energy functional, defined
in terms of multiple complex order parameters. It turns out that the ability to express the fee energy
functional in terms of as many complex order parameters makes it possible to self- consistently include
all elastic and plastic effects in the description of microstructure evolution (i.e. strain, dislocations and
grain boundaries).
In solidification, which occurs at high temperatures in metals, elasto-plastic effects are often negligible.
In this case, the simplest description of the solid is in terms of single real order parameter, ¢, which has
an analogous meaning to the order parameters discussed in the previous chapters. Assuming that the
complex order parameters ¢ are all real, and equivalent, further reduces F [{(ﬁ@}, T ] to depend only on
¢. This symbolically represented by ~ R
F[{¢g}h T] = F[6,T] (5.12)

The remainder of this chapter will consider the construction of a single order parameter model F[¢,T]
for the specific example of solidification of a pure material 3.

5.3 Single Order Parameter Theory of Solidification

As discussed above, the simplest description of solidification of a single crystal of pure material, it is
reasonable to assume that all G’s are the same, in which case the free energy in Eq. (5.11) becomes a
single order parameter theory. This simplification precludes the study of grain boundary interactions and
elastic and plastic effects. While the latter are not so important during solidification where temperatures
are relatively close to the melting temperature, the former are crucial for the study of polycrystalline
solidification. Nevertheless, a single order parameter theory is the first step for understanding the details
of dendritic solidification, the precursor to grain boundary interactions and solid state reactions. It also
provides a valuable pedagogical tool from which to build up more complex phase field models.
The simplest free energy functional for solidification for a pure materials is the familiar form

Flo.1) = [ {3levoR + 0@, 1)} 3 (5.13)

where T is the temperature, considered in this section as constant and €y is the gradient energy coefficient
setting the scale of the surface tension . The hat above F' has been dropped for simplicity. The gradient

3The formalism developed thus far has treated ¢ as fundamental parameter. In going forward it will sometimes be
convenient to relax this assumption and treat ¢ as a phenomenological parameter that merely serves to modulate the free
energy functional between two phases [137]. This freedom will make it easier to “manually” construct phase field models
that emulate well-known sharp interface kinetics of microstructure evolution.

4The symbol €4, rather than W, will hereafter be associated with the gradient energy coefficient of the ¢-field, and e
will be reserved to denote a small parameter used in perturbation analyses.
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energy term has the same interpretation as in previous examples, describing the energy density across
the interface defined by the order parameter. The magnitude of the surface energy scales with the
energy density €. This coefficient will be shown below to be related to scale of the interface width
(hereafter denoted W, in solidification models) and nucleation barrier (denoted H herefater) according
to €4 = vH Wy. In solidification the order parameter is usually taken to be zero in the liquid phase and
finite in the solid, since it is a true order parameter in this phenomenon and should reflect the vanishing
of any crystallographic order in the liquid. ®

The bulk free energy f(¢,T) for solidification is postulated, once again, by invoking Eq. (2.37) up to
fourth order in ¢ and first order in T' — T},, where T;,, is the melting point at a given average density,

F(6,7) = fu(T) +r(1)¢* + w(T)d’ + u(T)g" (5.14)

The first order term has been dropped since it would be not possible to have ¢iiquia = 0 otherwise.
To proceed, the coefficients r(T), w(T'), w(T) and fr,(T') are expanded to linear order in temperature,
around T;,. This gives
dfL

f(¢,T) = fL(Tm)+ diT (T_Tm)
T

+ 1(Tn)d* + w(Tn)d® + w(T))d* + (Ba + Bsd + Bag®)d*(T — Trn) (5.15)

where By, B3 and By are the first derivatives of r(T), w(T) and u(T), respectively, evaluated at T' =
T The coeflicients r(T,,), w(Ty,) and u(Ty,) can be inter-related by demanding that at T = T,
the resulting polynomial in ¢ has two stable minima, with equal free energies and an activation energy
barrier separating these two states. This is accomplished by setting r(7T,,) = u(T},) = H(T,,) and
w(Ty,) = —2H(T},), where H(T,,) is a constant that depends on the melting temperature. With these
choices the bulk free energy of the pure material reduces to,

F(@,T) = fu(Tm) = SL(T = T) + H* (1 — ¢)* + (B2 + B3 + Byg*)¢* (T — Ty (5.16)

where S, = — dft,/dT|;, is the bulk entropy density of the liquid phase. The polynomial g(¢) = ¢*(1—¢)?
can easily seen to be a humped function with minima at ¢ = 0 and ¢ = 1, and symmetric around ¢ = 1/2.
The constant H controls the height of an energy hump that forms an activation barrier between the two
phases at the melting temperature. The characteristic form of this function often leads it being called a
”double-well” potential. It turns out that any function featuring the same double-well structure can also
be used for g(¢).

The polynomial in ¢ multiplying the T — T, term must be chosen such that it interchanges the
stability of the two stable states of f(¢,T) relative to each other above or below the melting temperature
T,.. Specifically, the solid state should have a higher free energy than the liquid above T, and a lower
free energy than the liquid below T;,. These considerations are satisfied by setting

L L
B2 :37 ﬁ’

By =2
va 3

By =0 (5.17)

where L is the latent heat of fusion. This choice of constants makes the free energy

f(@.T) = fu(Tw) + H*(1 — ¢)> = S(¢)(T — Tn) (5.18)

5The models derived as examples here can easily be modified to allow the order parameter to interpolate between other
values in the solid and liquid. For example, many popular models in the literature scale ¢ from —1 to 1 in the liquid and
solid, respectively.
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where
L
S(¢) = Su— Tf(?’ —2¢)¢° (5.19)
The form of the bulk free energy f(¢,T) is particularly convenient in that the stable states of the order
parameter —determined by 9f (4, T))/0¢ = 0— are given by ¢s = 1 and ¢, = 0. Moreover, it takes on the
limits S(¢ = 0) = Si, and S(¢ = 1) = S, — L/T,,. Figure (5.3) shows a plot of Af = f(¢,T) — fu(T).

T>T

Af (¢,7) "
x T=T,
T<T,

Figure 5.3: Free energy in Eq. (5.18) above, below and at the melting temperature. Energy is plotted
relative the liquid free energy f(T) = f(¢ =0,T).

5.4 Solidification Dynamics

5.4.1 Isothermal solidification: model A dynamics

Following the hypothesis of dissipative dynamics and the fact that the order parameter in solidification
is a non-conserved quantity (i.e. an undercooled liquid can all crystalize), the simplest equation for the
evolution of the order parameter is constructed by considering the variational of Eq. (5.13) as a driving
force for the phase transformation, i.e.

dp 1 6F[¢,T) -
ot —?[74’75(1’7@
d L(T -T,,)dP .
= WiV - Z((f) _ K ) d((;b) +n(Z,t) (5.20)

57



where the parameters 7 = 1/HM and W, = e4/v/H have been defined. The functions g(¢) = ¢*(1 — ¢)?
and P(¢) = (3—2¢)¢?. Meanwhile, = 7¢ is a re-scaled stochastic noise term. The statistics of ¢ satisfy
the fluctuation-dissipation theorem in Eq. (4.19). This model can simulate the growth of isothermally
growth crystals. The initial conditions can be a liquid phase (¢ = 0) seeded with a crystal of solid (¢ = 1)
and the temperature T' < Ty,.

Equation (5.20) is similar in form as Model A studied in section (4.4). An important difference in this
case, however, is that the free energy has been constructed to be asymmetrical, with the minima in the
solid and liquid energies switching relative to one another at the melting temperature T,,. The tilting
in this way is demanded by thermodynamics and is represented by the function P(¢), which is odd in
¢. This is to be contrasted with the case studied previously where the free energy was symmetrical with
respect to the two phases since the transition from one state (above T.) to two (below T.) occurred via
the second order term in ¢.

5.4.2 Anisotropy

In its current form, the phase field model in Eq. (5.20) cannot simulate anisotropic growth forms, such
as dendrites. One of the most significant contributions to solidification that came out the late 1980’s and
1990’s was the so-called analytical theory of solvability (see section (5.8.1)), where the Stefan problem
of Eq. (1.1) was solved analytically and numerically, demonstrating that dendrites can only grow along
specific crystallographic directions if surface tension is anisotropic. In fact an isotropic surface tension
can only lead to isotropic structures. This was later quantitatively demonstrated with phase field models
[113, 170], which introduced anisotropy into surface energy by making the gradient energy coefficient
Wy and interface attachment kinetics time 7 functions of the angle of the local interface normal 7.
Specifically, the gradient energy term in the free energy functional and kinetic attachment time in the
phase field dynamics become

WA o /2T
T oo #(0) (5-21)

where

(5.22)

= arctan <8¢/8y>

0¢/0x
defined the angle between the direction normal to the interface and a reference axis. With these defini-
tions, the anisotropic phase field equation becomes

o¢ OF[o,T] .

= = 0 t

V- (W2(e)v¢) — 8, [W(Q)W'(a)aygb} +9, [W(Q)W'(a)am

dg(¢)  L(T —T) dP(¢)

~ T4 AT, dp TT@Y 2

7(0)

where W’ (6) denotes the derivative of W (#) with respect to . A convenient choice for the describing the
anisotropy is
W) = WsA(9)
F0) = TA*(9) (5.24)



where the function A(#) modulates the anisotropy of the interface width and interface kinetics time. A
convenient form that is often used in the literature for square symmetry is

A(0) =1+ €4 cos(40) (5.25)

where ¢4 describes the degree of anisotropy of of the surface tension (or surface energy), with ¢4 = 0
corresponding to the isotropic situation, defined by the length scales Wy and time scales 7. The reason
for the particular relationship between W(6) and 7(6) is required to be able to model zero interface
kinetics in the limit of a diffuse interface. This will become clear below.

5.4.3 Non-isothermal solidification dynamics: Model C

In most cases of practical interest treating temperature isothermally —or even uniformly— is not a good
approximation. Model A dynamics of section (5.4.1) can be augmented to consider non-isothermal tem-
perature evolution by allowing the constant temperature 7' — T'(Z, t), where ¢ is time and & is a position
vector. The temperature evolves such that the flux of heat into a volume element lead to a corresponding
change of entropy. This is expressed in the form of an entropy production equation [43, 18]

a8 >

T—+V-J.=0 (5.26)

ot
where J, is the entropy flux. If mass transport and convection are neglected J, ~ Jy in Eq. (4.3).
Moreover, Eq. (5.26) becomes the same as Eq. (4.7) with the substitution

TdS = dQ = dH, (5.27)

where dH, denotes the enthalpy at constant pressure. The enthalpy can be interpolated between phases
via the order parameter as
H, = pe,T — pLh(3) (5.28)

where ¢, is the specific heat at constant pressure and L is the latent heat of fusion for the liquid solid
reaction. The function h(¢) assumed to be some smooth function with limits 2(0)) = 0 and h(1) = 1.
It has been added to describe the generation of excess heat production if solid (¢ = 1) phase appears.
In the liquid, where ¢ = 0, the enthalpy is due only to temperature changes. In the solid, where ¢ = 1,
the enthalpy is reduced due to latent heat. The variation of h(¢) for 0 < ¢ < 1 corresponds to the solid-
liquid interface. Substituting Eq. (5.28) into Eq. (5.27), T'dS into Eq. (5.26) and making the replacement
fe — JB gives
pcp%—z - pLh’(qﬁ)% =—-V-Jy (5.29)

(where b/ = dh/d¢)). If convection effects are ignored the heat flux is Jy = —kVT, where k is the thermal
conductivity of the material and has the form of Eq. (4.8). This leads to Fourier’s law of heat conduction,
modified for changes of phase through the order parameter ¢. The conductivity can made a function
of the phase by expressing it as k = krq(¢), where ¢(¢) is an unknown function that interpolates the
conductivity across the solid-liquid interface.

Combining Eq. (5.29) with Eq. (5.23) gives a system of two coupled partial differential equations for
the evolution of the order parameter (¢) and the temperature (T'),

o¢

TA2(9)E = WV - (A%(0)Ve) — 9. W3 [A(0)A'(0)d,¢] + W30, [A(0)A'(0)0:¢)]
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dg(¢)  L(T = T,) dP(9)

do HT,,  d¢
or Lh'(¢) 9¢
5 = V(a@VD)+ T (5.30)

where a = k/pC), is the thermal diffusion coefficient and h'(¢) denotes the derivative of h(¢) with respect
to ¢. As shown in section 5.6 this model can be recast in a form known as “Model C” [92]. we will for
simplicity, therefore, refer to it as “model C” below. Many of the relevant physics of solidification of pure
materials can be well described without too much error if the thermal diffusion coefficient a is made a
constant. As will be discussed in future sections, this simplification also greatly simplifies the efficiency
with which model C may be simulated so as to capture the kinetics of the sharp interface model in
Egs. (1.1). Furthermore, as with the ¢ equation there should strictly also be thermal noise sources added
to the heat flux, i.e. Jo = Jo+ &.. Its statistics must satisfy the fluctuation-dissipation theorem as well.
Generally, thermal fluctuations are very important near a critical point, where interfaces become diffuse.
For first order transformations such as solidification, the noise plays a major role during nucleation and
the formation of side-branches [114] but does not strongly influence the stability near the dendrite tip
region. The effects of stochastic noise have been examined in detail by Elder and co-workers [63] and
Sekerka and co-workers [164, 165].

An early, isotropic, variant of the model C for solidification described above was used by Collins and
Levine [51] and studied in detail by Caginalp [35]. The specific model of Egs. (5.30) is the same as models
developed by Sekerka and co-workers in the early 90’s [150, 15, 200, 199]. It is more thermodynamically
consistent than the older models in its formulation but contains the same physics. In all cases the
basic ingredients required are an order paramter —or phase field— equation that effectuates phase changes
(solidification or melting) driven —via temperature— by a relative tilting of the solid and liquid free energy
wells.

Comparing the various models in the literature to Eq. (5.20) one immediately notices differences in
the specific form of the functions g(¢) and P(¢$). These functions are known as as interpolation functions
since they interpolate between bulk thermodynamic values of the free energy of the solid (¢ = 1) and
liquid (¢ = 0). Their form at intermediate values of the order parameter (0 < ¢ < 1) captures the
fundamental properties the boundary layer structure of the solid-liquid interface. In principle they can
be deduced from first principles using classical density functional theory or molecular dynamics, or even
fit using data from electron microscopy. To date there has not been much work to derive the precise form
of these functions. Indeed, as will be discussed in the next section, insomuch as the phase field model can
be considered a "tool” for emulating sharp interface kinetics (e.g. Egs. (1.1)), the precise form of these
interpolation functions is immaterial.

5.5 Sharp and Thin Interface Limits of Phase Field Models

One of the most subtle but important issues regarding the use of phase field models in quantitative
simulations of microstructure phenomena is the ability of models such as that descried by Egs. (5.30)
to properly emulate the kinetics of the sharp-interfce model described by Egs. (1.1), at least in the
limit where the interface can be considered sharp, that is, its presence neglected. In solidification, this
occurs when the undercooling or cooling rates are sufficiently low that the interface can be assumed to
be negligible compared to the other length scales (e.g. diffusion length, radius of curvature of a dendrite,
etc.). In this limit it is also reasonable to assume that the interface is in local equilibrium, corrected for
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by curvature effect described by the so-called Gibbs-Thomson conditions [167].

Two approaches for this have evolved through the years for choosing the interpolation functions and
parameters of model C in Egs. (5.30). The first is to operate in the limit where the interface width of
the phase field equation becomes vanishingly small, i.e. Wy — 0 or in physical terms Wy < d, (here
d, is the thermal capillary length). This known as the sharp-interface limit was pioneered by Caginalp
and co-workers in the late 80’s and early nineties [36, 37, 38]. The second approach recognizes that the
interface width should dissapear from the problem so long as it is much smaller than the diffusion length,
ie., W, < a/vs, where v, is a characteristic interface speed. This makes it possible for equations (5.30)
to emulate the sharp interface model of Egs. (1.1) even when Wy /d, is on the order unity. This is referred
to as the thin interface limit and was recently introduced by Karma and co-workers [113, 112, 57, 74] by
modifying a second order thin interface analysis introduced by Almgren [8].

The idea of mapping phase field models onto effective sharp interface models ~known as asymptotic
analysis— is illustrated in Figure (5.4). The figure shows a snapshot in time of the phase field ¢(x) and
reduced temperature U = ¢,(T'—T5,)/L across the interface of a solidifying front. The dashed lines are the
projections of the phase field solutions onto those of the equivalent sharp interface model. When W, # 0

Phase-field solutions
------ Sharp-Interface phase projections

(.
(solid) : o ol
0=1 ¢ field ot | — Sharp-Interface ¢y - L =7.) ¢
interface ___
_”: —— -d k- Vv (Gibb’s Thomson)
Uftield.——=7 (liquid)
: E' = \ (') =)
Outer region : . —Outer region  _
O: Wa -
Inner region

Figure 5.4: Schematic of the order parameter, reduced temperature fields and their projections to a
sharp interface. Diffuse or ”thin-interface” solutions of the phase field model become equivalent to the
corresponding sharp-interface solutions when projected onto a sharp interface (denoted by the dashed
lines) from the outside the interface region, of width W,.

the phase field model must be constructed such that the local velocity and values of temperature (or
concentrations in the case of alloys), when projected onto a hypothetical sharp interface, are equivalent
to the corresponding values obtained if the precise sharp interface model itself was used. Thus, in the
limit e = Wy /(a/vs) < 1, Wy ~ d, and a/v; large, the model should thus yield the same results as when
Wy < do and a/vs small, i.e., the sharp interface limit.

The difference between the sharp and thin interface limits of a phase field model is extremely significant
as far as numerical efficiency is concerned. The sharp interface limit is impractical to simulate numerically,
since the grid resolution and time scale of the phase field model are both scaled with the width of the
interface, simulating a phase field model in the sharp interface limit is completely impractical with current
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computing. In contrast, the use of thin interface (i.e. small compared to the scale of microstructure
but still comparable to or larger than the capillary length) allows the time scale of simulations to be
accelerated dramaticaly. When combined with efficient adaptive mesh refinement algorithms [170], phase
field simulations of microstructure formation can now be conducted in reasonable times.

In practice, the mathematics of extracting a sharp interface model from the phase field equations is
rather messy and complex. The basic idea is to rescale the equations in two ways. The first scales the
phase field equations such that space is scaled by a diffusion length, which controls patterns that occur on
scales much greater than W,,. It is then assumed that the solutions of the phase field equations in the outer
region can be expanded in an infinite series in a small small parameter, €, e.g. ¢ = ¢g + €d1 + €2pg + -+
and U = Uy + €U; + €2Us + - --. This solution ansatz is substituted into the phase field equations and
terms of similar order of € are grouped into distinct equations. A similar exercise is done when the phase
field equations are re-scaled so that space is scaled by the interface width W,. The final —and messiest—
part of the procedure is to match the inner and outer solutions so that they overlap at approximately the
scale of the boundary layer introduced by the phase field ¢. A procedure of a formal matched asymptotic
analysis of a generic version of Model C is shown in detail in Appendix (A). The next section discusses
the results of that analysis for the special case of the Model C in Egs. (5.30) for a pure materials, which
was developed in this chapter.

5.6 Case Study: Thin interface analysis of Equations (5.30)

This section works through a concrete example that illustrates the details of selecting the parameters of
model C such that it operates in the thin interface limit. Specifically, it summarizes the relation between
the parameters of Egs. (5.30) and the effective sharp interface coefficients one would use if studying
solidification of a pure substance from the perspective of a sharp interface model introduced at the start
of this book. In particular, two sharp interface parameters are required for to make contact between
the two models in simulations; the capillary length (d,) and interface kinetics coefficient (). To arrive
at these, the phase field equations must first be re-cast in the form of the generic phase field model C
analyzed in Appendix (A), after which the the recipes of the appendix can be brought to bear on the
parameters of model C presented in this chapter. Before proceeding the reader is encouraged to work
through Appendix (A). For the reader not wishing to go through most of the tedious mathematical details
of the appendiz, it is sufficient to read only the first section of Appendiz (A) —in order to become familiar
with the parameters and form of the generic model used there— and then jump to the summary of the
analysis presented in section (A.8).

5.6.1 Recasting phase field equations

Considering isotropic gradients for simplicity, Eqs (5.30) can be re-cast as

0
Taif = WiVio—g'(¢) - % {c+ CLhw)} P'(¢) (5.31)
m P
% = aV? <c + CLph(¢)> (5.32)

where temperature has been replaced by ¢ = AT — (L/c,)h(¢) (AT = T — T,,,), which is suggestively
labeled by the variable “c” as it is the analogue of concentration for alloys. Primes have been used
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to denote differentiation with respect to ¢. Choosing h(¢) = P(¢), Eqgs (5.31) and (5.32) can written,
respectively, as

o6 OF[o,
% g; ‘ (5.33)
% = aV?y, (5.34)
where
1 2 mix 3=
Flod = [ {GleveP + Hoto) + friie.o) | 7 (5.35)
rmx Cp L ?
B(c,¢) = T (C+CP(¢)) (5.36)
§F  ofmix L
po= 5= IR aé ) ;i <c+CP(¢>)> (5.37)

Interpreted in the context of an alloy free energy, fiiX(c,¢) is a quadratic approxmlatlon of the free
energy of a phase in term of its “concentration” ¢, while p is analogous to a ”chemical” potential (see
Appendix(A)).

The re-cast model above is mapped onto the generic model analyzed in Appendix (A)) by making
the following associations: The parameter H — w = 1/A (where w is the nucleation barrier). The last
term in Eq. (5.31) can be written as dfap/0¢ where fap = fRX/H, exactly analogous to Eq. (A.3)
of Appendix (A). Finally, the diffusivity function can be related to that of the generic model C in
Appendix (A) by making the following associations:

M — aq(,c)

Q) — 1
82 mlx
2B o /T (5.38)

Through the above correspondences, the parameter relations required to map the behaviour of model
C for a pure material onto the corresponding sharp interface model for a pure material —the traditional
Stefan problem— can now be acquired directly from the results of Appendix (A) as follows.

5.6.2 Effective sharp interface model

The coefficients of the effective sharp interface model require knowledge of the so-called lowest order
phase field and reduced ” concentration” solutions of the phase field equations. Here ”lowest order” refers
to the expansion assumed for the ¢ and ¢ fields in Eqgs. (A.16) with respect to the parameter e = Wy /d,,
which is assumed formally to be small 6. The lowest order phase field ¢ follows precisely from Eq. (A.51).
It should be noted that for a pure material, equilibrium occurs at T' = T,,, which leads to p — ufq =0,
where ufq denotes the chemical potential corresponding to a flat stationary interface in equilibrium.

6Note, that quantities in this analysis were extracted form a perturbation expansion that formally assumed the limit
Wy < do, which i.e. the classical sharp interface limit. It turns out however, that the results of Appendix (A) are shown
to hold even in the promised limit of Wy > do so long as the magnitude of the driving thermodynamic driving force fm”‘
is small, i.e. at small undercooling in the case of solidification.
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The steady state phase field ¢¢ of this model will be given by the solution of Eq. (A.51) (in all cases,
not only when € < 1, which is prescribed formally by the asymptotic analysis). Once ¢g(x) is known it
can substituted into Eq. (5.37), which gives the corresponding lowest-order concentration field,

co(x) = —(L/cp) P(do()) (5.39)

Note that, strictly speaking, the actual "lowest order” cq(x) differs from the steady state concentration
field by a small, additive, curvature and velocity correction, as discussed in Appendix (A). These correc-
tions can be neglected in determining the coefficients of the effective sharp interface model of the present
phase field model, as it turns out that only concentration differences enter the calculations.

The effective sharp interface equations of model C (see Egs. (A.130) and (A.131)) contain three
so-called ”correction” terms, which do not enter the traditional flux conservation equation and Gibbs-
Tompson conditions of the classical sharp interface model. These corrections are associated with the terms
AF, AH and AJ (defined in Appendix (A)). These terms exactly vanish for the model C presented in
this chapter. This occurs because q(¢l, ci) is a constant and P(¢) and g(¢) are symmetric. Consider
the term AF as an example. This “correction” gives rise to a chemical potential jump in Eq. (A.85) and
makes the Gibbs-Tompson condition in Eq. (A.107) two-sided. Substituting the zeroth order phase and
concentration fields, ¢, and co(z), for the lowest order fields, F* and F~ become

P {AC - W"”)C]} = [~ drp(ontonas (5.40)

qt q(é8's cg')
and

_ O [e(z) — L [°

- /_DO = /_Oo de(1 — Po()))dz (5.41)
Therefore, AF = 0 and F* = F~ = F since P(¢) and ¢(x) are symmetric functions around the interface,
x = 0. It is similarly straightforward to show that AJ = AH = 0, which imply no spurious correction to
the flux conservation relation in Eq. (A.131). Moreover, the Gibbs-Thomson condition, which describes
the chemical potential at the interface, is no longer two-sdied as F* = F~ (see Eq. (A.130)).

The coefficients appearing in the Gibbs-Thomson condition of the effective sharp interface model
corresponding to model C are extracted from Eq. (A.130), after the latter equation is re-written in terms
of temperature to read

T°(0%) — T,
L/ecy

where d, and (§ are the capillary length and kinetic coefficient, respectively, while v,, is the interface
normal velocity and & is the local interface curvature. The notation 7°(0%) denotes the temperature
outside the interface projected back into the interface. The conversion of Eq. (A.130) to Eq. (5.42) is
done by using Eq. (5.37) to write u(+o0) = p°(0%) = (cp/Tm) (c(£00) + (L/cp) P(¢o(£00))) and then
substituting ¢ = (T — T5,) — (L/c,)P(¢) while noting that T'(+o00) = T°(0%). This gives —after some
algebra— Eq. (5.42) with

d, = alﬂ (5.43)
A —
aiT A

= =<1 —a9= 5.44

’ WeA { “D } (5:44)



where \, a1, ag and 04 are given by

_ L2
A= A 5.45
T (5.45)
a = 04 (5.46)
K+ F
4 = (5.47)
¢

o0 9 . 2
gy = /_OO (;;) dx (5.48)

and where

K= [~ S penen{ [ 1Poue) - def ao (5.49)

— 00

while F =T, F/L and D = om’/W;.

It is noteworthy that the pre-factor outside the curly brackets in Eq. (5.44) is precisely the expression
obtained if the asymptotic analysis of Appendix (A) is stopped only at first order in ¢, i.e. Eq. (A.72).
Using just this level of approximation requires that 7 — 0 in order to simulate vanishing interface kinetics.
This leads to unrealistically long simulation time, particularly if Wy, A — 0 while maintaining a constant
ratio Wy /A, as required by the classical asymptotics —which origianlly went up to order e. The practical
feature of Eq. (5.44) is that one can emulate § = 0 exactly without having to make 7 — 0. Indeed, it is
seen that § vanishes when 7 ~ Wg)\, which can be quite large since it turns out that Wy/d, ~ A (i.e.
Eq. (5.43) ) can hold to quite large values of A\. This was first shown by Karma and Rappel [113].

5.7 Numerical Simulations of Model C

A code for simulating thermally limited dendritic crystals is included in the CD. It is found in the directory
called “ModelC_pure” and follows the same naming principles as the previous codes discussed for models
A and B. For details of the derivations of some of the discrete numerical equations presented below, the
reader is again referred to Appendix (B).

The solidification model in Egs. (5.30) comprises one model B type diffusion equation coupled to
one model A type order parameter equations. The former controls the rate of solidification through the
diffusion of heat, while the second is essentially ”slaved” to the first to update the position of interfaces.
The logistics for defining variables for a code to simulate model C follows analogously to that described
in the case of model A (section (4.9.2)). A notable difference in this case is that at least one new array
for the temperature must be defined, which implies that this simulation immediately requires double the
computer memory of models A or B. As can be expected, the numerical simulation involves a combination
of the update steps previously used for solving models A and B. An algorithm to update model C is shown
in Fig. (5.5). After updating the ¢ (represented by the array PSI(i,7)) from time n to time n + 1, the
difference in PST array between the two times must be separately stored and used to generate the latent
heat term in the update of the heat equation, represented by the U array.
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Model C pseudo code

Define and initialize variables
and arrays

I

Set initial conditions of PSI and U arrays

'

Update PSI from previous time.
Compute A(PSI)/Ar

Update U from previous time
using A(PSI)/Ar source

|

Print out fields and other relevant
information measured from
PSI & U arrays

I —
| S
END

Increment discrete
time counter

Figure 5.5: Flowchart of algorithm to simulate Model C for solidification of a pure material.

5.7.1 Discrete equations

The simplest way to update the heat diffusion equation component of model C (step four in Fig. (5.5))
is by using the explicit scheme in Eq. (B.10),

. . DAT . . . o (¢GLG) — ¢ d)
n+1 __ 770 2rm I(an ) )
UM id) = UM) + s A2 + AT 07 0) (P (5.50)
where the reduced temperature U is defined by
T — Tm
U= —— 5.51
(L/er) 20
and - or
D= Wi (5.52)

Time and space are made dimensionless through the re-scaling Z — x/Wy, and t = t/7. A one-sided finite
difference is used to discretize the time derivative. In Eq. (5.50) ¢™(i, j) is known from the previous (n'")
time step, while ¢"*1(i, j) is the latest update of ¢.

The update of ¢"1(i,j) (step three in Fig. (5.5)) is quite effectively done using a finite volume
approach. Specifically, a do-loop structure computes ¢"*1(i, ;) at each mesh point using the following
adaptation of Eq. (B.16),

"0 g) = ¢"(i.5)
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AQ[(bA(ij)]{Alx (JR(z‘,j) - JL(z',j)) + Aij(JT(i,j) - JB(i,j))
- 9@ ) - XUP’W(Z}J'))} (5.53)

where ) is given by Eq. (5.45). The arrays JR(i,75), JL(3,7), JT(i, ), JB(i,7) respectively handle the
gradient terms (order parameter fluxes”) from the ¢ equation on the right, left, top and bottom edges
of the finite volume centered around the point (i, j) (see Fig. (B.1)). They are given by

JR(i, j)=A[¢" (i+1/2, j)]{A[¢"(i+1/2, JIDERX (i+1/2,j)-A'[¢" (i+1/2, )| DERY (i+1/2, j)
JL(ivj)=A[¢”(i—1/2,j)]{A[d)"(i—l/?,j)}DERX(i—l/Zj —A'[¢"(i-1/2, j)| DERY (i-1/2, j)
JT (i, j)=Al¢" (i, j+1/2)] {A[(/)"(L J+1/2)|DERY (i, j4+1/2)+A'[¢" (i, j+1/2)| DERX (i, j+1/2)

) )+A'[¢" (i, j~1/2)] DERX (i, j—1/2) (5.54)

M~~~ ——

TB(i, ))=Al6" (i, -1 /2){Al6" i, -1 /2)| DERY (i, j-1 /2)+A'|
where A[¢" (i, 7)] is shorthand notation for A(0(¢™(i,7))), with the angle §(¢$) defined in Eq. (5.22). The
expressions DERX (i +1/2,j+1/2) and DERY (i £1/2,j £ 1/2) denote discrete x and y derivatives of

¢, evaluated at the centres of the four edges of the finite volume (see Fig. (B.1). For example, the explicit
form of the x derivatives evaluated at the right and left edges are given by

DERX(i+1/2,j) = (¢"(i + 1,5) — ¢"(i,5)) / Az
DERX (i —1/2,j) = (¢"(i,5) — ¢"(i — 1,7)) /AT (5.55)

The y derivatives on the top and bottom edges (DERY (i,j £+ 1/2)) are defined analogously in terms of
the index j. For the y derivative on the right edge of the finite volume, interpolation from the nearest
and next nearest neighbours of the point (4, j) must be used. For example,

DERY (i+1/2,j) = (d)”(i +Li+1)+¢"(65+1)+¢"(6,4) + " (i + 1,j)> [AAT

- <¢"(i + L) +0"(,5) + 0" (6,5 - 1) +¢" (i +1,5 - 1)) [AAT
DERY (i —1/2,j) = (qﬁ"(i,j +1)+¢"(i—1,j+1)+¢"(i—1,7)+ qb"(i,j)) JAAZ

- <¢"(i7j) +¢" (i - 1)+ " (i =17 —1)+¢"(i,J — 1)) /4Az  (5.56)

Equations (5.56) are similarly extended for the = derivatives defined on the top and bottom edges of
the finite volume. The final order of business is to derive a numerical expression for A[¢"(i £1/2,5 £
1/2)]. Substituting Eq. (5.22) into Eq. (5.25) and suffering a little with trigonometric identities gives the
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following recipe 7,

A0 = aus <1+e’{DERX (3)+ Dy (m)})
i,7)% — 2(5. 4
Allp"(i,5)] = —au*DERX(i,j)*DERY(i,j)(DERX(]\ZJILGQ(?%RY ( J))

MAG2(i,j) = (DERX2(i,j)+DERY2(z’,j))2 (5.57)

The constants ag, ajo and € are defined here by

s = 1-— 364
€ = dey/ag
ala = dag€ (5.58)

where ¢, is defined as the anisotropy parameter as in Eq. (5.25).

It is noted that Egs. (5.57) are evaluated numerically using an if-endif structure, so that when
MAG2(i,j) < 10~® (or some similarly small constant), A[¢"(i,5)] = as and A’[¢"(4,5)] = 0. It should be
noted that the update step defined by Eq. (5.53), along with the rules defined by Eqs. (5.54)-(5.57) are
local at each mesh point (4, 7). It is thus not necessary to define the additional arrays JR(i,j), JL(i, ),
JT(i,5), JB(i,j), DERX(i,j), DERY (i,7), MAG2(i,j). Each of these variable be defied merely as
a single scalar variable that is re-assigned a corresponding value at each mesh point. That will save a
significant amount of computer memory when running large systems.

Since both Egs. (5.50) and (5.53) are use explicit time marching, they are both subject to constraints
on the maximum At that can be used. In both cases, they both contain only second order gradients in ¢
or U. Linear stability for both in two dimensions demands that At < Az?/ (4max(D)) where max(D) is
the larger of D and 1/A[¢(i,7)]. It is typically the thermal equation that sets the scale for the smallest
time step as this is the fastest process.

5.7.2 Boundary conditions

The above algorithm is made complete by specifying appropriate boundary condition, which is required
to properly deal with gradients of U at the boundaries of the system. For example, to implement fixed
flux boundary conditions on the thermal field U, the first step is to define PST and U on a set of ghost
nodes outside the system (see also section (4.9.2)). For example, the discretization of U as U(1..N, 1..M)
(using Fortran 90 notation) would be represented on an array U(0..N + 1,0..M + 1). Prior to entering
the update phase for concentration, the following buffering condition should be applied:

U,:)=U(1,:) — qAx
U(N+1,:) =U(N,:) + ¢Ax
U(:,00=U(1,:) — ¢Ax
UM+1,:)=U(M,:) + qAzx (5.59)

"To obtain A[¢"(4,5)] and A’[¢"(3,5)], start with Eq. (5.22) (and its derivative with respect to 6 for the case of
A’[¢™(4,7)]) and re-express these quanitities in terms of tan(0) = 9y ¢/, ¢.
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where ¢ is the imposed boundary flux for the field U at the system boundaries. Similar buffering is made
for the PSI array, although in this case of array, mirror boundary conditions are most appropriate. These
can be implemented by the mapping

¢(07 :) = ¢(17 :)
(N +1,:) = o(N,:)
¢(:,0) = ¢(1,:)
(M +1, :) = ¢(M,:) (5.60)

5.7.3 Scaling and convergence of model

To illustrate a specific numerical example, model C was simulated using a set of phase field interpolation
functions also used in Karma and Rappel [113], namely,

J) = —o+¢°
Pl(¢) = (1-¢°)7
W(p) = % (5.61)

Use of these functions requires that the order parameters be defined from —1 < ¢ < 1, which does
not change the physics from the usual definition from 0 < ¢ < 1 in any way. Also, these definitions
give as = 0.6267 (in Eq. (5.46)) and a; = 0.8839 (in Eq. (5.47)). Figure (5.6) shows the initial growth
sequence of a thermally controlled crystal growing into an undercooled melt. The reduced temperature

U

t =2000A¢ t = 65000A7

Figure 5.6: (Left) Early growth sequence of a thermally controlled dendrite growing as a circular seed.
Left half is ¢ while the right is U, with green being the lowest and red the highest temperatures. (Right)
Later time morphology of crystal. Four-fold branches are governed by anisotropy.

was initially set everywhere to A = ¢,(T,, — Txo)/Ly = 0.55, while the initial order parameter field
satisfied ¢°(i,j) = — tanh(dist(i,)/v/2), where dist(i,j) = [(i — 1)Az]* + [(j — 1)Az]*> — R2, where
R, = 10(W,) is the size of a circularly shaped seed crystal nucleation from which solidification begins.
Zero flux boundary conditions were used. The simulation emulates zero interface kinetics (8 = 0 in the
Gibbs-thomson condition), which implies from Eq. (5.44) that D = ag\. Other parameters are A = 3.19,
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€4 = 0.06, At = 0.014, AZ = 0.4 and the system size is 400(W) x 400(W,). The four-fold anisotropy of
Eq. (5.25) is evident at ¢ = 65000A¢.

Conversion of the simulation results of Fig. (5.6) to real length and time scales is made via Eqs. (5.43)
for the capillary length d, and D = as\ from 5.44. For example, taking the thermal diffusion coefficient
of pure Nickel to be a &~ 1 x 107°m?/s and its capillary length d, ~ 2 x 10719, gives

Ad,
W, = ~1x107%m
ay
asW?2\
T = 279 ~3x 10 s (5.62)
«

These are very small time and length scales! In terms of these the physical system corresponding to
the simulation domain is 400 x Az x Wy ~ 0.16pm, while the total simulation time of corresponds to
100000 x At x 7 = 4.2 x 1071%. The only reason that anything at all is visible in less than a micron
in half a nanosecond is due to the very high cooling rate (i.e. very rapid solidification rate) simulated
in this example. In particular, taking the latent heat of Ni to be L = 8 x 10%J/m3 and the specific as
cp = 2 x 107J/m3K, the undercooling A = 0.55 corresponds to a quench temperature of about 220K
below the melting point. A physical system that has some [remote] relevance to this situation is a rapidly
cooled levitated liquid drop of dimensions on the order ~ 10um in diameter and which typically solidifies
on the order of a millisecond. Even for such a system, however, complete simulation of the solidification
process requires mesh of order ~ 25000 x 25000 nodes and ~ 10! iterations.

The issue of spatial resolution highlighted in the example of the previous paragraph can nowadays
be dealt with using the methods of adaptive mesh refinement (AMR), otherwise the memory manage-
ment becomes unmanageable and the computational time per time step becomes too long. Despite the
advantages of AMR, the small value of 7 still make the total number of time iterations prohibitive. To
overcome this problem, it turns out that A can be treated as a convergence parameter through which the
characteristic length scale Wy and time scale 7 can be self-consistently increased, without compromising
the sharp interface limit of the phase field solutions. The idea is that results will be independent of \
once quantities are re-scaled back appropriately using 7 and W, which are functions of A via Egs. (5.62).
Consider, for example, the steady state dendrite tip seed V. Once this quantity is extracted from a
simulation for a particular A, it must become independent of A when re-scaled as

Vd, TV

V= = —=—
o as AWy

(5.63)

This is illustrated in Fig. (5.7), which plots the dendrite tip velocity at A = 0.55 and ¢4 = 0.05, for
A =3.19 and A = 1.8. All other parameters and conditions are the same as that in Fig. (5.6). It is clear
that the scaling of velocity as in Eq. (5.63) leads to dimensionless steady state crystal growth rates that
are independent of the value of X\. In the next section a discussion of dendritic tip selection rates will
show that the dimensionless tip velocity depends only on A and ¢4.

Using Egs. (5.62) to tune the sharp interface properties of the phase field model leads to remarkable
CPU speed up, a very important result first demonstrated for this case by Karma and Rappel [113].
For example, going from A = 3.19 to A = 10 increases 7 by a factor of 27, while the increase in the
spatial resolution only increases in proportion to A (i.e. ~ 3). With this value of lambda, the example
discussed above would require about 8000 x 8000 nodes on a conventional uniform mesh. Moreover, when
simulated on an adaptive mesh, this simulation requires only on the order of about ~ 10% x 102 nodes
on an adaptive mesh. In this case, it is possible to perform a about a millisecond of simulation with 10°
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Figure 5.7: Dendrite tip speeds for two values of the inverse nucleation barrier \. The parameter A
is chosen to self-consistently fix the interface kinetics time (1) and interface width (Wy) in a manner
consistent with the sharp interface model. As such, scaling the tip speed with /Wy (or d,/D) makes the
dimensionless tip speed universal and dependent only on undercooling and anisotropy.

iterations. These days, the “marriage” of thin-interface relations such as those studies in this chapter
and adaptive mesh refinement has made it possible to use phase field models in a quantitative way, i.e.
to simulate experimentally relevant parameters and processing conditions. Adaptive mesh refinement is
illustrated in Figure (5.8), which shows the growth of a thermally controlled dendrite crystal growing
into an undercooled melt. The advantage of this approach is that CPU time scales with the available
amount of interface in the problem being simulated, not the physical size of the domain. This essentially
reduces the dimensionality of the problem as the computer algorithm spends most of its time computing
near interfaces and only a negligible amount of time doing calculations far from interfaces. The approach
makes it possible to simulate experimentally relevant systems sizes over much longer solidification time
scales than is possible with a uniform mesh, the latter of which would fail on account of the memory
required to be stored and the CPU time per time step inherent at every iteration.

5.8 Properties of Dendritic Solidification in Pure Materials

Since solidification in metals is difficult to study in-situ, much of the fundamental solidification research
has focused on transparent organic analogues of metals, which included compounds such as succinonitrile
(SCN) and pivalic acid (PVA). These materials are attractive because they solidify near room temperature
and exhibit many features of metals in their solidification; for example, SCN molecules arrange themselves
positionally into a BCC lattice during solidification. Early research focused on predicting the tip speed
and radius of curvature of isolated crystals of a pure material growing into an undercooled melt. There
were several theories developed to explain the operating state of a thermally controlled dendrite. One in
particular, coined microscopic solvability theory, involved a direct self-consistent solution of the Stefan
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Temperature

Phases Interface

Figure 5.8: Snapshot in time of a thermal dendrite evolving under the dynamics of Eqs. (5.30) for a
pure material. A four fold-crystal is growing into an undercooled liquid. The four frames show from top
right clockwise: temperature, with red being the warmest and blue representing the lowest temperature;
the interface position, deﬁned by ¢ = 0; the solid, in red, and lzquzdp in blue; the dynamically adapted
mesh resolving the temperature and phase feld

sharp interface problem described by Egs. (1.1). This theory is of particular importantce as it was later
found to be in excellent agreement with phase field model simulations and some experiments. The main
properties of dendritic solidification predicted by microscopic solvability and some subsequent phase field
results on dendritic growth are summarized in this section.For a more encompassing review of these and
other theories, the reader is referred to a comprehensive review by Saito [183] or Langer [138].

5.8.1 Microscopic solvability theory

It is fairly straightforward to show that for a pure material there is no steady state solution for a planar
or spherical solidifying into an undercooled liquid. Assuming, however, a parabolic crystal morphology,
Ivantsov [103] showed that there are stable solutions of the thermal diffusion equation and the associated
sharp interface boundary conditions of solidification in Eqs. (1.1) 8. Specifically, Ivantsov found that a

stable solution must satisfy
A = VrPelerfe(vVP), (5.64)

where A = ¢,(T},, — Too)/Ly is the undercooling and P is the Peclet number defined as

R RV
P=—=—| 5.65
ld 2 ( )
where R is the parabolic tip radius of crystal, V the tip velocity, and « the thermal diffusivity. A modified
version Eq. (5.64) by Fisher [45] included capillarity. This gave rise a V' vs. R relation that goes through

8The Ivantsov analysis ignores curvature effects.
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a maximum as R — 0. The Ivantsov relation, Eq. (5.64) predicts steady states for an infinite number of
(V, R) combinations, for a given undercooling A. Experiments, however, suggest, that only one steady
state tip speed and radius is possible for a pure materials growing inter an undercooled melt. Many early
metallurgical theories assumed that the operating state of a dendrite was defined by the (R, V) at the
maximum. This was not supported by experiments. A second equation relating V' and R is thus required
to uniquely determine the tip speed and radius as a function of materials parameters (e.g. anisotropy €4)
and process parameters (A).

A second equation between V' and R can be motivated by exploiting a linear stability analysis per-
formed by Mullins and Sekerka [156, 157]. The Mullins and Sekera analysis considers the stability and
growth rate of thermal fluctuations of a planar front advancing into an undercooled melt at a steady
velocity. Considering a noisy front as a collection of sinusoidal modes, Mullins and Sekerka derived a
linear dispersion relationship that governs the growth rate, w(q), of each sinusoidal mode of wave vector
q as a function of material parameters and solidification conditions ?. This is given by

A0 (2~ a1 -

2d, d2q®> 3d.q® d2¢*
e (5.66)

where ¢ is the inverse wavelength, l; = 2a/V is the thermal diffusion length and d, is the thermal
capillary length. A negative w(q) implies that a mode of that ¢ will decay and give rise to a planar front.
For a ¢ with a positive w(q), the mode will grow. Equation (5.66) predicts a range of unstable g modes.
These modes are amplified and ultimately give rise to dendritic branches (if you view this as happening
on a sphere). The maximum of Eq. (5.66) occurs for Ay = 2m/d,l4, which corresponds to the fastest
growing interface perturbation mode. It is reasonable to expect that R will scale with A, and so an
index, referred to as the stability parameter in some theories, is defined according to

Cdoly  dy  2ad, 4,V

RZ _RP VRZ 2aP? (5.67)

Indeed, a more rigorous treatment of the problem by Langer and co-workers [135, 136] shows that in
the limit where P < 1, o is the only parameter that enters the solution of the inverse problem for the
perturbed thermal field around a dendrite. The solution to the operating state of the dendrite thus comes
down to determining the constant o. Then Egs. (5.67) and (5.64) can be solved for V and R.

The aforementioned analysis of Langer and Muller-Krubmhaar [135, 136] considered dendritic growth
in the presence of surface tension. They found that below a certain value of o, a dendrite becomes unstable
to tip splitting instabilities. They postulated the so-called marginal stability theory, which predicted that
the selected value of ¢ is such that where the is just marginally stable to tip splitting. They estimated
o = 0.026, which was close to experiments on SCN, which gave ¢ = 0.0195. However, their method
of approximating o was very crude and it is likely that the agreement is simply fortuitous. Another
approach is to treat o as fitting parameter. This however, does not lead to a fully self- consistent theory
and will not be discussed further here.

A self-consistent approach for finding o is provided by the theory of microscopic solvability. The
theory considers the full non-linear inverse problem corresponding to the sharp interface model for a
pure material. An integral equation for the thermal field around a dendrite is developed, from which a
boundary integral equation for the crystal interface can be projected. Three interesting predictions arose

91t is assumed that the amplitude of a sinusoidal perturbation h(z,t) grows according to h o~ e“ (Dt where R is the
Fourier transform of h and ¢ is the wave vector of a perturbation.
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during the development of microscopic solvability. The first is that the boundary integral equation only
has non-trivial solutions if at least one the capillary length (d,) or interface kinetic coefficient (3) are
anisotropic [34, 23, 22, 129]. The second is that acceptable solutions arise only for quantized values of V
and R. The third is that only the solution with the fastest velocity is linearly stable [2, 32, 166]. These
considerations lead to one unique operating value of ¢ = 0*(e4), which is a function of the surface tension
anisotropy (e4). Substituting the explicit form of 0*(e4) into the left hand side of Eq. (5.67), and taking
the limit of small €4, yields the following analytical approximations for V' and R,

do 6;7/4 Y 2 ,7/4

R = ;P(A) ~ do;A_ €4 (568)
200, 200,

vV o= %Jﬂ(mez/‘* ~ :2‘2 Atel/*, (5.69)

where o, is a constant of the theory. For general values of €4, numerical integration must be used. The
results of microscopic solvability have been validated for A < 0.6 in pure nickel solidified by levitation [31].
For higher undercooling, non-iequilibrium interface kinetics become important and must be considered.

5.8.2 Phase field predictions of dendrite operating states

The first quantitative test of microscopic solvability theory by phase field models was made by Karma
and Rappel [113]. They used a model like the one discussed in this chapter was used to simulate free
dendritic growth and compared its predictions of dendrite tip speed and radius to microscopic solvability
theory, which —at the very least— constitutes an analytical solution of the the sharp interface equations
of solidification. Later work further confirmed these results in tests of a novel adaptive mesh algorithm
for simulating phase field models [170].

At low undercooling the diffusion of heat (pure materials) or impurities (alloy) occurs over a length
scale that increases with decreasing undercooling (or supersaturation in the case of alloy dendrites). In
this limit the approach to the steady state predictions of solvability theory follows a long-lived transient
period. During this regime, dendritic branches are strongly interact with each other or with the boundaries
of their container [170, 182]. As a result the tip speed and radius will converge very slowly, with the
approximate time to convergence scaling as teon ~ 9D/V?2. This is seen in Fig. (5.9), which shows the
dimensionless tip speed (Vd,/D) vs. dimensionless time (t/7,) for thermal dendrites grown in the limit of
low undercooling. Also shown in the figure is the case where one of two perpendicular dendrite branches
(see Fig. (5.8)) is abruptly eliminated from the simulation. The result is a change in the velocity vs. time
curve of the surviving branch, evidence of the strong interaction between branches.

Interestingly, even though the dendrite tip speed (V) and radius (R) follow a log lived transient, the
stability parameter o* does not. Figure (5.10) shows o* versus dimensionless time for the corresponding
undercooling values of Fig. (5.9). It is seen that the stability parameter very rapidly attains the value
predicted by microscopic solvability. This further suggests that the solvability predictions of Egs. (5.68)
and (5.69) will, in theory, be achieved eventually. It should be noted that the low undercooling simula-
tions are practically impossible to conduct numerically using any fixed-grid approaches such as the ones
discussed in Appendix (B). The disparity of length scales between the diffusion length and the interface
width necessitates the use of dynamical AMR techniques, as well as the use of a large ratio of interface
width to capillary length Wy /d,, which exploits the benefits discussed in section (5.7.3).

Since the time to converge toward a steady state diverges at low undercooling, for most practical
applications of solidification interactions and transient dynamics is the rule, not the exception, even in
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Figure 5.9: Steady-state growth speed of 2D thermal dendrites (curves) at low undercooling. The horizontal
lines show the predictions of solvability theory. The scales are logarithmic.

the simple case of isolated dendrite growth. Transient dynamics at low undercooling is characteristic of
competitive interactions that occur in complex solidification problems [109, 219, 215, 185, 144, 151, 10,
22, 130, 182]. In this regime, the dendrite evolves sufficiently slowly that the theraml diffusion can be
modeled quasi-statically, i.e. by solving V2T = 0 after each time step of the phase field equation. The
dynamics and morphology of the dendritic growth in the presence of long-range diffusion interactions
can be examned using concepts of crossover scaling theory. Specifically, consider a dendrite arm growing
along the positive x-axis. Rescale the y-axis by the transverse length, Y,.x of the dendrite,

Y
= 5.70
N Vo (>70)
and the x-axis by the total length, Xy ax, of the dendrite arm along its centre line,
T — Ty
IN = Ta:()t? (5.71)

where Xiax = Ttip — Troot and Zroo: defines the base of the dendrite where it emerges from the seed
nucleus. Plotting a sequence of time slices of the the dendrite arms under this re-scaling of coordinates
shows that the dendrite morphology is described by a similarity solution. Figure (5.11) shows the collapse
of multiple time sequences of simulated 2D and 3D dendrites onto one similarity solution [171]. The
numerical simulations do not have noise and thus do not exhibit sidebranches. However, it is expected
that the scaling of the primary branch shape will remain essentially unchanged in the presence of noise. It
is found that X,.x ad Yiax obey power-law type scaling, where Yi,ax ~ t7, where o &~ 0.5 and Xpax ~ 8
where 8 ~ 0.75 at early times and crosses over to 8 &~ 1 at late times. Also shown in Fig. (5.11) is
the scaling of an experimental time sequence of PVA dendrites grown in microgravity by Glicksman and
co-workers [172].

The transient scaling of the dendrite arm along directions parallel and transverse to the tip suggest
that there is a scaling relationship obeyed by these two dimensions. In particular, it is found that these
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Figure 5.10: 2D simulation data of o* wvs time for A = 0.25,0.1, and 0.05. For clarity, the A = 0.1 and
0.25 data have been shifted along the y axis by 0.04 and 0.02, respectively

two dimensions can be described by

Tou) _ Lp (1)

Lp ™D ™D

Yinax(t t t
ax(®) Py() (5.72)
Lp ™D ™D

where Lp and 7p are characteristic length and diffusion scales for the transient regime. The functions
Fx(z) and Fy(z) are crossover scaling functions that obey one type of power lay at small z = ¢/7p and
cross over to another at large values of z. Figure 5.12 show the numerical form of Fx(z) and Fy(z)
computed from phse fields simulations.

It should be noted that there are several pictures of dendrtie scaling that can emerge depending on
the boundary conditions used. In the data presented above, zero-flux boundary conditions were used.
Moreover, analyzing only dendritic as in tip [9, 145] will give different growth exponents in the transient
scaling regime. The main result of data such as that in Figs. (5.11) and (5.12) is that it predicts that the
morphology and growth kinetics of dendrite growth is self-affine.

5.8.3 Further study of dendritic growth

The above subsection was intended to wet one’s appetite with the complex physics involved in the growth
of a single crystal. It is far from complete and it would go beyond the scope of this book to discuss
such matters further. Armed with the basics of phase field modeling in pure materials the reader is now
advised to consult the scientific literature for further study on dendritic growth, including works involving
phase field modeling. An important question, in particular, which has not been discussed here involve
the physics of side branch formation. The formation of side branches has been studied extensively in
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Figure 5.11: Dynamic scaling of computed 2D and 3D dendritic crystal morphology for crystals of a pure
majem’al. The figure also contains experimental PVA dendrite arms scaled at times t1=42.48s, t2=62.73s
and t3=82.98s.

experiments [97, 132] but a proper theoretical understanding of their origin and formation is still lacking.
Early analytical theories based on WKB approximations [19, 33] studied the effect of thermal nose as the
main source that give rise to side branches. This was later also followed up using phase field modeling
[41], where the amplitude of the side branches away from the dendrite tip were examined in detail. Recent
work by Echebarria and co-workers suggest that both mechanisms may be at work [58] reveals that side
branching may in fact be caused by both thermal noise and a non-linear deterministic mechanism, as
was originally proposed in the 1980’s [148]. This is an area where phase field modeling is likely to play a
leading roe in the future due to the complex nature of side branch morphology, which makes it challenging
for analytical theories to deal with.
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Figure 5.12:  Crossover scaling functions describing lateral width of simulated dendrite arm Ypax and
tip-to-base distance Xmax , for A =0.25,0.1,0.05 corresponding to Fig.(5.10).
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Chapter 6

Phase Field Modeling of
Solidification in Binary Alloys

This chapter extends the phase field methodology to include alloys —a mixture of to of more components.
Following a brief review of some nomenclature regarding alloys and phase diagrams, the kinetics describing
the sharp interface evolution of solidification or solid state microstructure formation in an alloy are
discussed. This will be used as a backdrop against which to develop a phase field free energy for a class
of two component (binary) alloys. This free energy will be used to derive equations of motion for the
evolution of the order parameter (phase field), impurity concentration and heat during the growth of an
alloy phase. The last stage, as in the case of pure materials, is to make a connection between phase field
simulations —which inherently employ a diffuse interface— and the corresponding alloy sharp interface
models. The reader is assumed to have (or advised to acquire) some background knowledge of binary
alloys and their basic thermodynamics.

6.1 Alloys and Phase Diagrams: A Quick Review

An alloy is a mixture of two or more components which can be elements or compounds. For example,
the designation Al-Cu refers to a mixture of aluminum with copper. Similarly MgO-AL;Og is an alloy of
magnesium oxide with aluminum oxide. An alloy can have more than one phase depending on the number
of components and their relative ratio. Figure 6.1 shows two solid phases of an Al-Cu alloy and illustrates
their corresponding atomic makeup. The two phases are discerned only by the relative amount of copper
to aluminum and each phase is physically and chemically distinct from its constituent component, Al
and Cu. An alloy is parameterized by the concentration of impurity (usually the minority component).
Concentration is measured either by weight or number of atoms, to the total weight or number of atoms
of the entire mixture. Therefore, an alloy of aluminum alloyed (mixed) with 4.5% by weight copper is
denoted Al-4.5%Cu.

A phase diagram is a map that tells us what phases of an alloy are possible at a given impurity
concentration and temperature. Constructing phase diagrams is a complex business depending on the
number of alloy components. The starting point is the free energy of all phases that an alloy can form,
each parameterized in terms of its component concentrations and temperature. A fixed pressure is typ-
ically assumed. The free energy of a phase is typically determined by fitting experimental data using
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Phase « Phase B

oAluminum atom
eCopper atom

Figure 6.1: Top: two phases of an Al-Cu alloy. Solid alloy phases are denoted by Greek letters. Bottom:
corresponding atomic make up of each phase. (Adapted from Fig. 9.9 of Ref. [40]).

various fitting functions. These functions are typically phenomenological but motivated by thermody-
namic considerations, as will be shown below for simple binary alloys. For binary alloys, minimizing the
total free energy of a two-phase system under the condition of mass conservation leads to the so-called
common tangent construction [167], a rule by which a binary phase diagram can be calculated. Consid-
ering an example of a solid in coexistence with its liquid, the common tangent construction is expressed
mathematically as

fuler) = fo(e) _ Ofpler!) _ 0fs(cg?)

L 1
Heq et =t Oc Oc (6.1)

where ficq is the equilibrium chemical potential, while f7,(c) and f,(c) are the free energies as a function
of concentration of the liquid and solid phase, respectively. The self-consistent solution of all three
equalities in Eq. (6.1) yields jteq and the equilibrium liquid and solid concentrations, denoted ¢;* and ¢24
respectively. By applying this construction at different temperatures, a phase diagram is constructed.
Figure 6.2 illustrates a binary eutectic phase diagram containing two solid phases (o and ) and one
liquid phase. Colored regions in the figure denote regions of concentration an temperature where a single
phase can exist. Other regions denoted concentrations and temperature where phases ca co-exist. The
concentration 18.3wt% Sn is called the solubility limit of the alloy; the largest concentration of Sn that
can be mixed with Pb in the solid phase. Beyond the solubility limit, and for temperature below the
eutectic temperature (Tg), solid « will precipitate a second solid phase 8. At T = T it is possible to
have liquid and the two solid phases co-exist.

One of the key assumptions guiding the description of microstructure evolution is that an interface
between two phases remains in local equilibrium. This is only really true at low levels of cooling. Luckily
this apparently limiting condition just happens to describe more commercial casting conditions. Emerging
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Figure 6.2: Phase Diagram of lead (Pb) alloyed with tin (Sn). Colored fields denote single phases, while
fields denote coexistence regions. Solid phases are labeled with Greek letters. (Adapted from Fig. 9.16
of Ref. [40]).

technologies (e.g. strip-casting of aluminum) are starting to move towards processing thinner materials.
This implies a more rapid cooling rate and, hence, finer microstructure. A consequence of this is that
the interface can not always be considered to be in local equilibrium during the during solidification.
Non-equilibrium interface kinetics lead to both morphological differences or microstructure and non-
equilibrium phases that do not follow the equilibrium phase diagram.

6.2 Microstructure Evolution in Alloys

The growth of microstructures in alloys is more complex than in pure materials because the phase
transformation kinetics are limited by both heat and mass transport. Fortunately, these two processes
occur of sufficiently different time scales that for many cases of practical importance only the slower of
the two —mass transfer— need be considered. The faster, heat conduction, can typically be treated as
either isothermal or “frozen”, wherein temperature is assumed to evolve so rapidly compared to solute re-
distribution that it is in a quasi-steady state. This assumption is not unreasonable for low levels of cooling
as the ratio of thermal diffusion () to solute diffusion D ranges in many metals from 10~* < a/D < 1072
Of course there is nothing to stop one from formulating multiple equations for phase, concentration [of
impurities], heat, etc. However, the more equations that must be simulated numerically, the longer the
simulation times will be, thus making it more difficult to attain experimentally relevant times.

6.2.1 Sharp interface model of solidification in one dimension

Figure 6.3 illustrates a typical temperature quench (7" — T3 from 7T») into the two phase co-existence of
an alloy. In the particular case shown, the liquid phase L of average concentration C, will precipitate a
second, solid, phase a.. The growth rate of the o phase within the liquid will depend on the driving force,
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which is proportional to the depth of cooling into the co-existence region. The growth rate is, however,
also limited by the ability for solute atoms of element B to diffuse away from the interface of precipitated
phase. This is because, as illustrated in Fig. 6.3 , the o phase can only exist at a lower B concentration
than the L phase. As a result, solute atoms of B are rejected from the crystal as it grows, in order that
it may attain a lower concentration.

T L -side of interface at ¢,
o - side of interface at ¢,
L
a B
A 9 B
Ca € ¢ Cyp

Figure 6.3: Quench into a two phase (solid-liquid) coexistence region of a A-B eutectic alloy. When
cooling from T3 to T5, the L (liquid) phase gives rise to a solid phase a.

A kinetic model of the growth of a second phase precipitate must model diffusion of solute atoms
away from the a — L interface, keep track of the driving force of the reaction and account for the local
concentration of solute on either side of the interface. These effects are non-linearly coupled. For example,
the higher this accumulation of solute atoms at the interface and/or the slower the diffusion of solute
atoms in the liquid, the slower the precipitate can grow. The lower the accumulation and/or the faster
the diffusion the faster it can growth. If it is assumed that the o — L interface remains in equilibrium !
the precipitation reaction is described (in 1D) by

2
oc _ o, C

ot Loz2

J D, oC
ot = = = 6.2
Vit AC, ~ (1—k)Cyp 02|, (6.2)

where k is the ratio of the equilibrium solid to liquid concentrations is Cs/C, = k, obtained from the phase
diagram at the quench temperature. In the second of Egs. (6.2), the notation ACj is the concentration
difference between coexisting o and L phases at equilibrium and J is the mass flux, described by Fick’s
first law. This example also assumes the so-called one-sided diffusion model, wherein diffusion is only
assumed to take place —to any significant degree— in the parent (in this case liquid L) phase. Solute flux

Tthis assumes that the diffusion of atoms near the interface and their attachment to the solid from the disordered liquid
proceeds so rapidly that atoms have enough time to achieve their equilibrium proportions —on the solid and liquid sides of
the interface— on time scales much smaller than those governing meso-sclae diffusion
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in the precipitate phase is thus assumed to be zero, which implies that either the precipitate diffusion
coefficient D; ~ 0 or 9C/9z = 0. The second of Egs. (6.2) imply that everywhere expect the interface
the transport of impurity atom occurs by simple mass diffusion.

The considerations above can be equivalently applied to any generic transformation where one phase
emerges (precipitates) form a parent (matrix) phase. Another very important reaction that is amenable
the kinetic equations above is a so-called precipitation reactions. In the context of Fig. (6.2), this occurs
when the solid « phase is cooled to a temperature below the solvus line. This then causes particles of the
[ phase. It should be noted that the kinetic equations discussed here will have do be expanded to involve
elasticity, in cases where the precipitated and matrix phases elastically interact at phase boundaries.
Such strain-induced phase transformations will be discussed further in Chapter (7).

6.2.2 Extension of sharp interface model to higher dimensions

In two or three dimension the sharp interface kinetics of Eq. (6.2) can be extended in a relatively straight-
forward manner. To formalize the nomenclature a bit, consider, again, a sharp interface model of single-
phase solidification/precipitation in a binary alloy made of components A and B, whose phase diagram
has arbitrary solidus and liquidus lines. Starting with a liquid phase and cooling into the co-existence
regions will initiate solidification of the solid phase. Assuming for the moment isothermal conditions,
solidification is described by solute diffusion in each of the bulk phases and two corresponding boundary
conditions at the solid-liquid interface: flux conservation and the Gibb’s-Thomson condition. In the
limit where the interface can be assumed to be mathematically sharp, these processes are expressed,
respectively, as:

oc = V- (MpsVp) (6.3)

(e —¢s)Ve = DgOne|”™ — DOy (6.4)
e 208}

CL,s — ch75 = —Wﬁ — ,BVn (65)

where ¢ = ¢(Z, t) is the concentration field, p is the chemical potential, Mj 1, (c) = QD, rc(1 —¢)/RT is

an expression for the mobility, with Q the molar volume of the phases, D; ;, the solid/liquid diffusion co-

efficients, respectively, T’ the temperature and R the natural gas constant. The notation d,,¢|* represents

the normal derivative on the liquid/solid sides of the interface. In the last two equations, cr, s represents

the concentrations on the liquid/solid side of the interface, o is the surface tension of the solid-liquid
eq

interface, x is the local interface curvature and AC, = ¢;* — ¢2 where ¢}, represent the equilibrium

liquiud/solid concentrations at the given temperature. The parameters AT = 92G, 4(c)/ 9c?|ea , where
G s is the molar Gibb’s free energy of the phase. Finally, V;, is the local interface velocity and /3 is the
interface kinetics coefficient
For a general binary alloy, standard but lengthy manipulations [181] can be used to express Eq. (6.5)
as
20T/L
ImL,s(T)I(1 = k(T))cr!

i =1 (1= k(D))

eq
CL,S

k— BV, (6.6)
where the constants my,  are defined by

RT?(1 — k(T))[G" (¢32,)e5e,]

mo(T)] = =
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and where an effective partition coefficient k(7') is defined by

k(T) = = (6.8)

The notation 3’ denotes a re-scaled form of 3. In general, the partition coefficient is temperature depen-
dent as the phase diagrams are curved. The notation, G (¢;,) is the second derivative of the dimension-
less molar Gibb’s free energy evaluated at the equilibrium concentrations ¢, , and made dimensionless
by redefining G=G /RT. The parameter L is the latent heat of fusion per volume of the alloy. For the
case of an ideal dilute alloy, G (¢29)cd = G (5153 = 1, k(T) = k. is a constant and m, = my, = m is
a constant, where m is the slope of the liquidus line. These simplifications reduces Egs. (6.6) to

20T /L
Ime|(1 = ke)cr!

do

eq

CL,s - 1_ (1 _ke) |:
L,s

} K — BV, (6.9)

where the traditional expression for the so-called solutal capillary length of the dilute ideal binary alloy
is indicated.

6.3 Phase Field Models of Binary Alloys

This section begins by proposing a free energy functional of binary alloys that incorporates a solid-liquid
order parameter field (or phase field) ¢(Z) and the usual solute concentration field ¢(Z) and temperature
T(Z). The free energy density has contributions from bulk phases and from interfaces in the system.
Various binary alloy systems will be explored. The evolution of the phase, concentration and temperature
fields, the equation of motion of which will be introduced in the following section, will be see to follow
directly from the global minimization the of this free energy functional. Essentially, the free energy
functional provides the driving force for non-equilibrum phase transformations in alloys.

6.3.1 Free Energy Functional

The complete free energy functional of an alloy must incorporate chemical and temperature effects of
bulk phases as well as gradient energy terms. As was seen for dendritic growth in pure materials, the
properties of dendritic growth are strongly controlled by surface tension effects. Indeed, there can be no
dendritic morphology without anisotropy that appears either in the surface tension at low undecooling
or the interface kinetics at high undercooling. In alloys there are two types of interfaces, one due to
a transition from an ordered solid to a disordered liquid. The other can arise when crossing across
a compositional transition, which can occur even within the same ordered crystal. The complete free
energy functional that incorporates bulk and interface effects is given by

B lecVe|>  |egVol?
AF_/V{ s +f(¢,c,T)}dV (6.10)

where €4 = vVH Wy and €, = VHW.,, are constants that set the scale of the solid-liquid and compositional
domain interface energy, respectively, and have units [J/m]'/2, while [H] = J/m?. The constants W,
and W, define the length scales of the solid-liquid interface and a compositional boundary. To make a
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clearer connection with the nomenclature in Appendix (A), the bulk free energy expressions in Egs. (6.13),
(6.15), (6.17) below are separated into the the barrier terms Hg(¢), which depends only on phase, and

£mix

the remaining bulk free energy part, fi5°, which depends, in general, on ¢, ¢ and T'. Thus,

f(¢,e,T) = Hy(¢) + fRE(¢,¢.T) (6.11)

In most problems the e, term can be neglected since €4 can be tuned to account for the total surface
energy.

6.3.2 General form of f(¢,c,T)

One way of constructing the free energy of an alloy is to assume that the alloy is comprised of two pure
phases of A atoms and B atoms, each phase weighted by the relative concentration of A and B atoms.
To this are added the interactions emerging from the fact that the alloy is, in fact, a mixture of A and
B atoms in either phase. This includes both entropic and enthalpic interactions. Differences in of these
affects between the solid and liquid phases are modulated the usual phase field or order parameter ¢.
These consideration can be modeled mathematically as

f(¢7 G T) = (1 - C)fA(d)? T) + CfB((bv T)
+ RT{(1-¢c)In(1 —¢) +clnc}
+ (1 =) {g(¢)Ms(c, T) + (1 = g(¢)) ML(c, T)} (6.12)

The functions f4 and fp in Eq. (6.12) are the individual energies of bulk A and B components, respectivey.
The logarithmic terms represent the entropic free energy of mixing. The final terms M(¢, T') and M, (c, ¢)
are phenomenological additions encapsulating the net effect of the interactions between atoms of A and
B. The function g(¢) is a phenomenological interpolation function with limits g(¢ — ¢ = 0) = 0 and
g(¢ = ¢5) = 1. This function can be thought of as modulating the free energy between the two phases
being modeled. As in the study of pure materials, the form of g(¢) must be chosen such as to reduce
f(@,¢,T) to the appropriate bulk thermodynamics form for each phase. The single phase free energy
that might be, for example, obtained from a thermodynamic database is related to the free energy in
Eq. (6.12) by fr(c) = f(¢ =0,¢,T) for the liquid and fs(c) = f(¢ = ¢s,¢,T) for the solid.

Equation (6.12) is general and can only becomes useful if specific forms for fa. fg, My, M are
prescribed. The following subsections present three models that chooses these functions to model three
different alloy systems, a dilute binary alloy, an isomorphous binary alloy and a eutectic binary alloy.

6.3.3 f(¢,c,T) for isomorphous alloys

One of the simples alloys that Eq. (6.12) can describe is an idealized, isomorphous alloy, which has only
one solid phase. An example is Cu-Ni. The free energy in Eq. (6.12) can be specialized to this situation
by using fa and fp from Eq. (5.18). For components with similar atomic radius, it can also be assumed
that nucleation barriers are the same, i.e., Hy = Hg = H. Finally, both non-ideal terms, M, and My,
are set to zero. This gives,

Fé,e,T) = (fr(Ta) = (T = Ta)si) (1 = o) + (fr(Tp) — (T — Tp)sp) c

La(Ta—T) Ly(Ts —T)
- <A 71—+ =2 — c) P(¢)
+ Hg(¢)+ RT{(1 —¢)In(1 — ¢) + clnc} (6.13)
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where T4 and T are the melting temperature of components A and B, respectively, L4 and L4 are
latent heats of fusion of A and B, respectively and s% and sk are the entropy densities of liquid A and
B. The interpolation function P(¢) satisfies the limits P(0) = 0 and P(¢ = ¢s) = 1. In this model
atoms only interact via entropic interactions, i.e. they tend to avoid each other by randomizing their
configurations on a lattice. It should be noted that the validity of Eq. (6.13) (as well as the models in the
next two section) assumes that (7' —T4)/Ta = (T — Tp)/Ts so that the linear temperature expansions
of components A and B are valid in the neighborhood of T~ T4.

Applying the common tangent criteria in Eq. (6.1) to the model in Eq. (6.13) gives a simple analytical
prediction for the equilibrium solid and liquid concentrations, referred to as the (solidus) and liquidus
lines. The are given by

1 — o—2ATa/RT
<UT) = <

S

¢—2ATg5/RT _ —2ATA/RT

YT (T) e~ 2ATe/RT (6.14)

where ATy p = La, B(TA’}’B —T)/(2T2-B)). Tt is recommended that interested reader try to obtain these
as a way of brushing up on basic thermodynamics.

6.3.4 f(¢,c,T) for eutectic alloys

The free energy Eq. (6.12) can also be specialized for a binary eutectic alloy. Once again, the functions
fa and fp can be set to the from in Eq. (5.18) it will be assumed that H4 = Hg = H. If the liquid
phase is assumed to be ideal, the function My = 0. A non-ideal solid can then be modeled via M. One
example, of M, is the empirical form M, = (a;T — a2)(2¢ — 1) — (a3T + a4), where the constants a;-ay4
are to be determined from thermodynamic databases for a particular alloy. 2 This gives,

1600
% N
%,
o%%

1500 o

1400 o

7 13004

1200 o

1100 o

1000 & T T T

0 02 04 0.6
weight percent Cu

Figure 6.4: Phase diagram of Silver-copper. Blue lines represent equilibrium co-existence lines. Red lines
are meta-stable projections.
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fé,e,T) = (fr(Ta) = (T = Ta)si) (1 = o) + (fr(Tp) — (T — Tp)si) c

La(Ta—T) Lg(Tg—T)
< T, (I1-¢)+ Ty c) P(o)
+ c(1—c){(a1T — az)(2¢ — 1) — (a3T + aq)} P()
+ Hg(¢)+ RT{(1 —¢)In(1 — ¢) + clnc} (6.15)
For the case a; = 1.73, as = 5600, az = 9.19, ay = —44600, a common tangent construction applied

numerically to Eq. (6.15) leads to the phase diagram in can reasonably model the phase diagram in
Fig. (6.4), which is a fairly good approximation of the of Ag-Cu phase diagram.

6.3.5 f(¢,c,T) for dilute binary alloys

An important practical limit of the ideal free energy in Eq. (6.13) is the limit of very small solute con-
centrations. Expanding the logarithms in Eq. (6.13) and taking the limits ¢ <« 1 gives

f(¢,e,T) = Hg(¢) + fL(Ta) + cfr(Ts) — s (T —Ta) = s{ (T — Tp)e

LA(T—Ta) T—-Tg)

Li(
T P(¢) + =2 T ¢P(¢) + RT {clnc — ¢} (6.16)

Expanding temperature as T' = Ty + AT, where AT = T —T 4, and neglecting AT ¢ < 1 further simplifies
Eq. (6.16) to

f(¢,¢,T)=Hg(¢) + fr(Ta) — ATS(¢) + E(¢)c + RT {clnc —c} (6.17)
where
La
S(¢) = sh— ?AP(¢)
B@) = (Ta—Ta) (5~ 22P(0)) (6.18)

The above derivation neglects the fr,(Tg)c term, which is reasonable only if f1(T4) is not too different
from fr,(Ts). The function S(¢) interpolates the bulk entropy from liquid to solid via P(¢), while E(¢)
modulates the change of internal energy due to a solute concentration c. As mentioned previously, there
is a certain degree of freedom in choosing their specific form, so long as the quantities they interpolate
attain their thermodynamically predicted far field values. Moreover, as far as the thermodynamics of the
bulk phases are concerned, it does not even matter if a different P(¢) is used in S(¢) than that in the
internal energy E(¢). It will be shown in section (6.7) how this property can be exploited to significntly
simplify the calculation of surface tension for binary alloy phase field model using Eq. (6.17).

6.4 Equilibrium Properties of Free Energy Functional

As discussed previously, the bulk free energy of a phase is captured in the non-gradient term of the phase
field free energy. Inclusion of the gradient expressions further makes it possible to model the surface

2The constants a1-a4 used here are different from the corresponding variables used in the Landau free energy construction
in Chapter 1.
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tension of equilibrium interfaces. In order to compute the surface tension associated with the free energy
functional of Eq. (6.10), it is necessary to first calculate the corresponding equilibrium concentration
and phase field profiles. At equilibrium, a flat crystal-melt interface will be characterized by a constant
chemical potential ugq and corresponding steady state profiles for concentration, ¢,(z), and phase field,
®o(2). Minimizing the grand potential with respect to ¢ and the free energy in with ¢ gives the equilibrium
profiles ¢, and ¢, as the simultaneous solutions of the following equations:

F 6F(¢ac) — afgnéx(coa(bo) 2d2co

Baq ™ dc dc T2
oF _ 2d2¢0 / 1 afgnéx(qso’ Co) _

Where ng is obtained by considering the equilibrium of the two phases from the interface. The partial
derivatives in Eq. (6.19) can be replaced by ordinary derivatives as the profile are one dimensional in
equilibrium. Equations (6.19) must be solved subject to the boundary conditions ¢,(z — o0) = ¢p,
Co(x = —00) = ¢s, Po(x — 00) =0 and ¢,(z = —00) = ¢@s.

The far field values {cs, cr, ¢s, 1, = 0} are determined by considering Eqs. (6.19) far from the interface
—in the of the bulk material- where derivatives vanish. The bulk free energy f(¢,c) (T dependence
suppressed for simplicity) is first minimized with respect to ¢ giving two solutions, ¢s(c) for the solid and
¢r, = 0 in the liquid (this assumes a fourth order ¢ expansion of f(¢,c)). Substituting ¢s(c) and ¢, =0
back into the bulk free energy gives fs(c) = f(¢s(c),c) for the solid and fr(c) = f(¢ér = 0,c¢) for the
liquid. Applying Eq. (6.1) to fs(c) and fr(c) gives qu, ¢s and ¢, with which the corresponding order
parameters, ¢ and ¢y = 0 can also be computed. It should be emphasized that while the discussion
has been in the context of a solid-liquid interface, the procedure above can be applied equivalently to
coexisting solid phase or other two phase interfaces as well. Moreover, while the discussion thus far has
assumed that ¢, = 0, different choices of g(¢) and fRX(¢,c) can lead to minima where ¢z, # 0.

6.4.1 Example of a multi-state model

These above ideas are best illustrated by an example. Consider an example of a “toy” bulk free energy

of the form 5
F(6:0) = Rle— ) - Ble-en)g? — Lot T
where the constants ag, as, a4 are in principle temperature dependent. This form of free energy is chosen
specifically to illustrate the generality of the ideas discussed herein to phase transformations different
from solidification. Indeed, this form of free energy density is used in Ref. [201] to model precipitation
of multiple ordered structures from a matrix phase of a binary alloy. By construction it represents each
phase by a quadratic approximation in concentration. The left frame of Fig. (6.5) shows f(¢,c) for the
constants ag = 30,a2 = —4,a4 = 2.8,¢1 = 0.3,¢c5 = 0.2.
The bulk liquid and solid order parameter and found by minimizing f(¢,c) with respect to ¢. This
gives

1 1
¢r =0, ¢S=i2\/2a4—|—2 a3 + 4as (¢ — c2) ¢q::|:2\/2a4—2\/ai+4a2(c—@) (6.21)

where ¢, represents the disordered or matrix phase and ¢, and ¢, four ordered variants (i.e. precipitates).
Here only ¢ is considered. Note that ¢, is concentration dependent (contrast this to the case of pure

(6.20)
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model in section (5.3)). Substituting ¢;, and ¢, back into f(¢,c) gives the chemical free energies of the
bulk solid and liquid,

SO =f6=0L=00) = T(c-c)
fs(e) = f(¢=¢s(c).c) = %(c —c)? - %(c — e2)R(c) — g—iR(c)Q + 3%43(@)3 (6.22)
where
R(c) = 4 64(c) (6.23)

The right frame of Fig. (6.5) plots fs(c) and fr(c). It should be clear that fs(c) is the ¢ = ¢5(c) contour
of f(¢,c) and fr(c) is the ¢ = ¢, = 0 contour. Applying the common tangent rule in Eq. (6.1) gives the
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Figure 6.5: (Left) Free energy landscape of an alloy versus composition ¢ and ¢. (Right) free energies of
solid, @ = ¢5 contour, and liquid, ¢ = 0 contour. The dashed line is the common tangent line.

compositions ¢z, and cg, and ugq, the slope of the common tangent line, shown by the dashed line in the
figure.

Following the calculation of {¢s, ¢r1, s, cL, ,ugq}, these values served a boundary conditions to the two
differential equations in Eq. (6.19) for the equilibrium profiles ¢,(z) and ¢,(x). In the special case when
€. = 0, the first of Eq. (6.19) shows that the equilibrium concentration field is actually "slaved” to the
phase field ¢, i.e.

Co(x) = Co(¢o(x)) (6.24)

This then makes the second equation an ordinary [non-linear] differential equation in ¢,, i.e.

d2 o ! 1 aimix 0y -0 o
gd;é _g(¢o)_ﬁ .fAB ((baqsc (¢ ))

=0 (6.25)

The example in this subsection is of relatively little practical value but it serves to illustrate that the
process of calculating the equilibrium properties and profiles for the order parameter and concentration,
while straightforward, can be quite tedious if not impossible, depending on the order of the polynomial
part of the free energy density f(¢,c). Simplicity of the algebra involved in calculating the thermody-
namics of the phase field free energy is a key factor that guides the choice of interpolation functions. This
will be highlighted below in a case study.
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6.4.2 Calculation of surface tension

The calculation of the surface tension of an alloy interface is calculated by considering the surface excess
of the grand potential in a system with a planar interface. Formally,

o= [ 10200 c0) — Qb (6.26)

where the grand potential €2 and its equilibrium value {2 are defined by

2
Qeq = fs(es) = ig €s = frleL) — pizgcL (6.27)

Equation (6.26) is evaluated in two pieces, one from —oo < 2 < 0 and the other form 0 < z < oo. Doing
this and substituting, for example, Eq. (6.11) gives

2 2
Vo, o) = 2 (%i) + F(or co) — oo

0 62 2 .
= (;(%‘i) +H[g<¢o>—gm1+[z“gX<¢o,co>—fs<cs>]—ugq[com—cs])dx

— 00

oo [ 2 2 o
+/O <2¢ <aa(io> +H [g(¢o) - gm] + [ Xléx((bO?cO) - fL(cL)] - /’qu [CO(J’.) - CL]>dI (628)

where g, = g(¢s) = g(¢r) is the minimum of the potential barrier between the two phases.
Equation (6.28) is simplified by multiplying both sides of the second of Egs. (6.19) by d¢,/dxz and
integrating from —oo to a point z. This gives

W2 (dp,\> [* do 1 [T 9fmixdg
7(;5 o . o o AB 1) _
5 < o ) /Oogl(d)o) T dx 7). 06 d dx =0 (6.29)

The integrand of the third term in Eq. (6.29) can be expanded as

OFRE (b0, o) dbo _ dFR  OFRE(D0rco) dey _ dfFE ¢ de,

oo} dx dx dc dx de  MEagp (6.30)

which is substituted into Eq. (6.29) to give

T (%) = H6) ~ ga)+ [ G0cd) ~ flen)] — i eole) ~
= H [g(¢o) - gm] + [7Xl]i3x(¢0a co) - fL(CL)] - ng [Co(x) - CL] (631)

where W;H = ei) was used. The first line of Eq. (6.31) is obtained by integrating the second equation
in Eq. (6.19) from —oo to x, while the second line is obtained by integrating from x to co. Substituting
the two [equivalent] right hand sides of Eq. (6.31) for the corresponding expressions in Eq. (6.28) gives

2
o= WjH[m (if;) dz (6.32)
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Equation (6.32) is analogous to Eq. (3.18) for the surface tension of model A. The main difference for
an alloy is that the equilibrium phase field ¢, now has a concentration dependence through the interface
for an alloy. While this is a physical result, it is clearly tedious to determine c,, particularly for a highly

non-linear form of X or if €. # 0. A more serious complication arises in Eqs. (6.28) and (6.31) when
one wishes to emulate a particular surface energy with a diffuse interface. It turns out that for realistic
values of interface energy, the extra terms on in the large round brackets of Eq. (6.31) limit the largest
interface width that can be used to a few nanometers. This is shown elegantly by Kim and co-workers in
Ref.[119]. Clearly this is a limiting feature if one wishes to consider matter of numerical efficiency. Way

of getting around this limitation will be discussed below.

6.5 Phase Field Dynamics

The dynamics of the alloy solidification proceed analogously to those in a pure material. At low rates
of solidification, the diffusion of heat occurs much more rapidly than the diffusion of solute impurities
in a binary alloy. As a result, the temperature can be considered a ”frozen” on the time scale of mass
transport, which this become the rate limiting step in the solidification process. Under these conditions,
it is reasonable to consider only solute diffusion and phase field dynamics. It is straightforward to extend
the equations below to include temperature evolution by including the enthalpy entropy production,
Eq. (5.26), and enthalpy, Eq. (5.28). This is left to the reader.
The changes in solute concentration are governed by the well-know mass conservation equation

Jc >

—=-V-J 6.33

T (6.33)
where J denotes the flux of solute. When J = —Ve, the usual Flck’s law of diffusion is recovered. In

more general cases, however, the flux of solute is given by J=-M (¢, ®)Vu where M (c, @) is the mobility
and p = dF/dc is a generalized inter-diffusion potential [14, 90]. This form of the flux is derived from
the entire free energy functional and considers bulk and gradient energy contributions. For ideal alloys
M(c,¢) = Drq(¢,c) = D(Q/RT)Q(¢)c(1 — ¢), where Q is the molar volume of the alloy and Dy, is the
liquid phase diffusion. The function Q(¢) interpolates the diffusion across the interface. It can either be
determined experimentally —a difficult task— or constructed so that the alloy phase field equations emulate
the sharp interface models described earlier in this chapter. Substituting the inter-diffusion potential into
the mass conservation gives

Oc

5 = PrV-{ae,qvu}
= DLV~{q(¢,c)V (‘W—ezv%” (6.34)

where ¢(¢, ¢) is given by
2 fmix
a(p.) = Qo) LB 2.9
c
with Q(¢) being used to interpolate mobility between different phases. This function is yet another
interpolation function that can either (a) be in theory fit to microscopic measurements or (b) used as a
degree of freedom to help map the behavior of a phase field model onto the corresponding sharp interface
model.

(6.35)
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In analogy with the case for a pure materials, the second equation in the phase field model for binary

alloys is the standard first order equation describing the dissipative dynamics of the phase field ¢, i.e.,
T@:_£:W2v2¢_@_iw

ot 5o ¢ dp H  9¢
where 7 — 1/(MpH). It is should be noted that the alloy phase field model is another instance of a
"model C” discussed for a pure materials; it comprises a flux conserving diffusion equation coupled to
an equation for a non-conserved order parameter. For simplicity, Eq. (6.36) has omitted surface energy
anisotropy. To model anisotropy, it is necessary to modify the gradient term in Eq. (6.36) and 7 according
to

(6.36)

W2Vl — V. (W%e)ws) — 8, [W(G)W'(a)aygﬂ +9, [W(G)W’(@)@mqﬁ]
) (6.37)
where W (#) = W4 A(6) and 7(0) = 7A2(#) with the form of A() given by Eq. (5.25).

6.6 Thin Interface Limits of Alloy Phase Field Models

The thin interface limit of Egs. (6.34) and (6.36) is obtained by connecting these equations to the alloy
model in Appendix (A), which is of the same form as the one studied here (when the notational change
H — w is made). In the limit when the phase field interface becomes ”sharp” (i.e. Wy < d,) the
alloy phase field equations presented above rigorously reduce to the corresponding sharp interface kinetic
equations presented earlier in this chapter. This limit, however, is of little practical value in 2D or 3D
numerical simulations of complex microstructure formation due to the grid resolution required and the
very small associated time scale 7 required to eliminate interface kinetics. If there is any hope of using
phase field models quantitatively at experimentally relevant microstructure growth rates two ingredients
are required. The first is the use of a diffuse interface Wy, which can dramatically increase the usefulness
of efficient numerical algorithm such as adaptive re-meshing. The second is the ability to self-consistently
and easily relate 7 and W, to a unique surface tension and interface kinetics coefficient (particularly
B8 =0), even when Wy, ~ d,.

Emulating an effective sharp interface limit with a diffuse phase field interface is more difficult for an
alloy than it is for a pure material for two main reasons. As already discussed at the end of section (6.4.2)
the coupling of solute and order parameter fields in the steady state solutions makes the determination of
surface energy quite tedious. Another issue deals with the fact that it is not possible to self-consistently
relate the surface energy to the nucleation barrier height (~ A™!) and the interface thickness (W) for
arbitrarily diffuse interface widhts. This has been shown quite nicely by Kim and co-workers [119]. As will

be shown in the examples below, this limitation can be removed by requiring that 0 f(¢,, c,)/0¢ = 0
at steady state. This is done either by the choice of interpolation functions, as is done by Karma, Plapp
and co-workers [112, 57, 74], or by introducing fictitious concentration field, as is done by Kim [122] and
others (see section (6.9)).

The second difficulty arising in attaining a desired thin interface limit of an alloy phase field model
arises because solute diffusion in the solid phase is essentially zero on the time scales over which mi-
crostructure selection occurs. This so-called two-sided or non-symmetric diffusion gives rise to spurious
kinetic effects to the standard sharp interface model of section (6.2.2). Specifically, it contains extra terms

in the flux conservation equations that scale with the interface width and there is a jump in the chemical
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potential that scales with the interface width, which makes the Gibbs-Thomson conditions two sided.
The generic form of these so-called “corrections” (referred to in Section (A.8) as AF, AJ and AH) was
already discussed in section (5.6) and shown to identically vanish for pure materials. In alloys they do not
formally vanish as they are physically linked to solute trapping effects that emerge due to the existence
of a finite interface thickness. Typically, since these correction terms scale with the dendrite tip speed
and the interface width, they are essentially irrelevant at low solidification rates and a realistic values of
Wg. On the other hand, as discussed previously, efficient simulatons of phase field models require the
use of rather diffuse interfaces, which can be much larger than the solutal capillary length. As a result,
to perform quantitative phase field simulations it is critical that these kinetic corrections must be made
to vanish, otherwise they will be artificially amplified.

It turns out that an efficient way to make the correction terms AF, AJ and AH = 0 are vanish
requires altering the variational form of Egs. (6.34) and (6.36). Specifically, this involves the addition of
a so-called anti-trapping current to the mass transport equation. The general idea of the anti-trapping
flux is to correct for the spurious solute trapping cause by the diffuse interface. Along with the freedom
to choose the form of the function that interpolates diffusion through interface, there are enough degrees
of freedom to eliminate the spurious kinetics in the thin interface limit. This ”illegal” move of adding an
unphysical source of flux addresses the computational inefficiency that arises from simulating the phase
field model with a ”sharp interface” (i.e. interface width of order 1-2 nm) by morphing the original model
into a mathematical tool that merely emulates the results of a sharp interface efficiently, even when the
interface width utilized is rather diffuse —or ”thin”.

A detailed discussion of how an alloy phase field model can emulate the sharp interface model of
Egs. (6.34) and (6.36), as well as the subtleties of eliminating undesired kinetics effects is discussed in
detail in Appendix (A). For the reader wishing to forego the mathematical details, it is sufficient to
review the first sections of Appendix (A) and summary in section (A.9). The ideas discussed in those
subsections are applied to a specific example in section (6.7).

6.7 Case Study: Analysis of a Dilute Binary Alloy Model

It is instructive to illustrate the concepts of this chapter by a concrete example. The starting point of
this section is the free energy functional in Eq. (6.10) with fRiX(¢,c,T) given in Eq. (6.17), and the
dynamical equations of Eq. (6.34) and (6.36). The idea here is to analyze model’s properties, including
its thin interface properties, a pre-requisite limit if one wishes to simulate low undercooling regime
quantitatively. Readers of the phase field literature will recognize the development of this model as the
special case studied in Echebarria et. al. [57].

6.7.1 Interpolation functions for f(¢,c)

It should be clear that the choice of P(¢) that modulates the bulk behavior of S(¢) and G(¢) is irrelevant;
the only requirement is that all choices have the same bulk limits. In fact, S(¢) and G(¢) can each have
its own, separate interpolation function, i.e.,

(0,0, T) = ™ [elne — o 4 fA(T,) — AT [ - TLM)} tlee+Aqg@)e  (6.39)

m

where g(¢) is some function that interpolates entropy between solid (¢ = ¢5) and liquid (¢ = 0), while
g(¢) in another function that similarly interpolates the internal energy between its two bulk values. Other
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definitions are T, = T4 is the melting temperature of species A, AT =T — T,,, R is the natural gas
constant and (2 is the molar volume of the alloy ®. The parameter sy, is the entropy of the liquid, ez (e)
are the internal energy of the liquid(solid), Ae = e, — €1, and L is the latent heat of fusion.

The function §(¢) is constructed to satisfy g(¢ = 0) = 0, g(¢ = ¢s) = 1 and 0 < g(¢) < 1 for
other values of ¢. An explicit form that will be used in the calculations that follow is G(¢) is chosen as
3(¢) = ¢3(6¢ — 15¢ + 10). The function g(¢) is chosen to have the same limits as §(¢). Its explicit form

is chosen to be
1

g(¢p)=—In[l—(1-k)g .

9(6) = o L= (1= K)3(0)] (6:39)
where k is the partition coefficient of the dilute binary alloy. It appears that the specific choice of g(¢)
in Eq. (6.39) has been dropped out of thin air. It will be appreciated below that §(¢) has, in fact, been
”back-engineered” so that the phase field and concentration fields completely decouple at steady state
for a flat, stationary interface, a "trick” first used in Ref. [57].

6.7.2 Equilibrium Phase Diagram

Consider the mean field properties of the bulk terms of the free energy Eq. (6.38), starting first with
the calculation of the equilibrium phase diagram of this alloy. The starting point is the generalized bulk
chemical potential

n= afA%i(b’ C) _ R?;m Inc+ €r + A€§(¢) (640)

The chemical potential within each phase Eq. (6.40) is written as

RT,,
ued = ) Incs, + Ae+ €,

m

o R
puit o= 5 Inep, +er (6.41)

where ¢, and ¢y, represent equilibrium sold and liquid concentrations at temperature 7. In equilibrium
W= feq and so setting ¢ = p? = peq gives the equilibrium partition coefficient, i.e.

k=S = e QAc/RTn (6.42)
cL
or, equivalently, AeQY/RT,, = —Ink.

Solving fieq = p%, fleq = p5' and f(cs, po = ¢s) — f(cr, do = 0) = peqlcr — ¢s), gives fieq and the
liquidus line of a dilute ideal binary alloy. The results is

T="T,, — [W] o (6.43)

mr

where the liquidus slope of the alloy, my, is indicated in the large square bracket.

3The division by Q merely makes the units of the free energy density from J/mole to J/volume, to make it appropriate
for integration in the free energy functional.
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6.7.3 Steady state ¢, and ¢, profiles

The equilibrium (i.e. steady state) concentration profile across a stationary planar solid-liquid interface
is found by considering the equilibrium the chemical potential y.q. This is a constant given by

Peq = Rgm Incy(z) + e + Aeg(do(x)) (6.44)

where ¢,(x) is the equilibrium concentration field across the solid liquid interface of some grain and ¢, (x)
tracks the planar steady state interface profile between solid and liquid.Solving for ¢,(x) and using the
second of Eqs (6.41) to eliminate €7, — peq gives

€o(®) _ €o(Po(®)) _ nkg(o0(@))] (6.45)

l !
Co Co

where ¢/ has been defined as the reference liquid concentration at a given quench temperature. Using
Eq. (6.39) the steady state concentration can equivalently be written in terms of §(¢g),

@l _ (1~ (1~ K)g(00(@)) (6.46)

[
Co

The equilibrium phase field profile, ¢,(x) across a planar solid-liquid interface (parameterized by x)
is given by solving the Euler Lagrange equation §F/d¢ = 0 in 1D,

2 ¢, 0g(do) [ATL 9g(¢o) 09(¢o)
a2 0k, { T. 00, 200,

(where Wy, = +/€4/H). Expressing L in terms of AT using Eq. (6.43) and using Egs. (6.39) and (6.45)
shows that the large bracketed term in Eq. (6.47) actually vanishes, i.e.,

co(qbo)} =0 (6.47)

—ATL
T

T, Ae
LAT

[g'wo) " g/<¢o>co<¢o>] 0 (6.48)

(primes denote derivatives with respect to ¢,). The steady state phase field profile is thus determined
analytically by solving

2d%¢0 _ 99(¢o)

¢ dx? 0d,

=0 (6.49)

For g(¢) = ¢?(1 — ¢)?, the solution of Eq. (6.49) is a simple hyperbolic tangent profile, ¢,(r) =
[1— tanh (z/v/2Wy)] /2, where z denotes the distance normal to the interface. It should be emphasized
that it is only possible to make ¢, independent of ¢,(x) for the specific relationship between g(¢) and
g(¢) made in Eq. (6.39). For general choices of these functions, ¢, () will depend on ¢,(x). Substituting
oo(z) into Eq. (3.18) gives the surface tension of this dilute binary alloy model,

2
oo = %%H (6.50)

Comparing Eq. (6.49) and the Eq. (A.40) in section (A.6.1) shows that Eq. (6.49) is the same as the
lowest order phase field equation (A.40). The lowest order phase field formally determines the surface
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tension of the phase field model (i.e. Eq. (6.50)) only in the limit of small Wy /d,. It turns out, however,
that the property in Eq. (6.48) actually makes it possible to model the surface energy of this model with
Eq. (6.50) for all values of the interface width Wy 4.

6.7.4 Dynamical equations

It is instructive to re-cast the dynamical phase field equations (6.34) and (6.36) for the dilute alloy
into a form that will be useful when examining the model’s thin interface limit. This is done by first
re-expressing 02X (¢, ¢, T)/0¢ as follows:

Ofix(g,c,T) ATL

96 = 7 9@+ A (d)e (6.51)
COATLL, o (R0
= T, O T AT T 1 - ha@)]

ATL cdAe(1—k) ¢ ~
N (Tm R co(¢>>g(¢)

_ (cﬁ,Ae(lk))< kATL C) 7'(¢)

In k AT Ae(l — k) co(®)
_ Bk oy T9)
- Ink {eo(9) }Co(¢)

where Eq. (6.39) was used to eliminate g'(¢) from the second line of Eq. (6.51), while Eq. (6.46) was
used to go from the third to the fourth line. Using the liquidus line to express the latent heat as
L = RT2(1 — k)/(Qmy) and eliminating L from the fifth line results in the sixth line. Use is also
made of the identity from the equilibrium phase diagram, AT/(mrcl) = 1, and the definition of Ink
following Eq. (6.42). It is noted that Eqgs. (6.39) and (6.46) can also be used to write §'(¢)/co(¢) =
—[Ink/(1 - k)] g'(¢)/c., which can be used to express Eq. (6.51) in the equivalent form

OfRE (6., T)
¢

—Ae(co(¢) — ) ' (9) (6.52)

_ RT,,Ink AT
Q  mpc,

(c—co(8)) 7' (¢)

The form of 9 f/d¢ can be further simplified by eliminating ¢(= ¢(Z)) in Eq. (6.52) with respect to
a dimensionless chemical potential, u, defined relative to the equilibrium chemical potential of the liquid
teq (e.g. Eq. (6.41)), i.e.,

Q

u = RTnL (/’I’ - ,LLE) (6'53)
Q RT, RT,
-t m 1 A€d _ m 1 I
RT. < Q nc+ Aeg(o) + €, o nc €L)

— I (;) — Inkg(g)

o

4This is possible because for the particular choices of g(¢) and g(¢) made here, fX(¢, c)/d¢ vanishes to all orders for
a steady state corresponding to a flat stationary interface.
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- w( e amo)

where the definition of p from Eq. (6.40) has been used in the first line of Eq. (6.53), while the rela-
tion Ink = —Q/RT,, has been used in the second line and Eq. (6.39) has been used in the third line.
Equations (6.46) and (6.53) can be used to write

<C(f) _ CO<¢>> 7@ = 1—01-Kge) (e —1g (¢

cl cl
(1-k)

= e -7 (9) (6:54)

where g has been eliminated in favour of g using Eq (6.39). Substituting Eq. (6.54) in Eq, (6.52) gives

1a_mix , ’T RTml k AT _. —/

RT,Ink AT (1—k)c

l
_ (et _ 1)d
QH mpch  Ink (e )9'(¢)

= MAcp(e" —1)7(¢) (6.55)
where
Acr = (1-k)d
N RT7TL
A= e (6.56)

Using the manipulations above, the final form of the dynamics for the phase field equations for the
dilute alloy become

T%f = Wivié- 8?9((? —Mep(e" = 1)g'(9) (6.57)
% = V- (DrQ(¢)c(1 - ¢)Vu) (6.58)
o (ca [1-(1- k>g<¢>>1) (6.59)

It is clear that at steady state, time derivatives vanish, v = 0 and c¢,(z) and ¢,(x) are automatically
described by their equilibrium solutions. By re-scaling time by ¢ = ¢/7 and space by = = x/Wy,
Egs. (6.57)-(6.59) can be characterized by three dimensionless parameters: \, D = DLT/Wg and cl.

It is noted that Eqgs. (6.57)-(6.59) can further be modified to deal with directional solidification by
making the substitution
G(z—V,t)

u_>u
e e’ + AT,

(6.60)
where AT, = |myz|c, is the directional solidification temperature range on the phase diagram, where Vi

is the pulling speed of the sample through a thermal gradient G. This extension is treated in detail in
[57] and will not be discussed further here.
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6.7.5 Thin interface properties of dilute alloy model

It is shown in Appendix (A) that, in their present form, Egs. (6.57)-(6.59) cannot be exactly mapped
onto the sharp interface model of section (6.2.2), for a diffuse interface. Several so-called ”correction”
terms emerge in the corresponding flux conservation and Gibbs-Thompson conditions. These terms are
summarized in section (A.8) (labelled as AF, AH and AJ) 5. As discussed previously, these terms
are vanishingly small at low solidification rates or when Wy < d,. When the interface is smeared for
numerical expedience however, they are artificially amplified. They must thus be eliminated —or kept
under control- in order to self-consistently be able to emulate the precise sharp interface kinetics of the
model in section (6.2.2) —and to be able to obtain tractable relationships for d, and 8 (see Eqgs. (6.73)
and (6.74)). Subsections (6.7.6) and (6.7.7) examine a modification of the above dilute alloy model to
make the aforementioned correction term vanish.

Readers wishing to skip the details of the asymptotic analysis of this model can simply make use of
the modified model in Eqs (6.63)-(6.67), for which the corresponding sharp interface parameterization is
given by Eqs. (6.72)-(6.77).

6.7.6 Non-variational verision of model (optional)

Equations (6.57)-(6.59) are mapped onto those of the generic alloy model in Appendix (A) by making
the following associations:

) w — H
1 a mix _
L J‘A%;M = AAcp(e® — 1)§(9)
Q
¢(p0) = QP
B RT,,
e
0~ 0 (6.62)

The parameters 7, Wy and Dy, have the same meaning in Appendix (A) as they do in this chapter.
Appendix (A) derives the thin interface limit of the Egs. (6.57)-(6.59) by expanding ¢ and ¢ to second
order in the small parameter € = Wy /d,. It should be noted that this e the same small parameter used
in classical sharp interface analyses. The results of this specific analysis are also valid in the diffuse
interface limiti, W, ~ d,, so long as the thermodynamic driving force for solidification (or any other
transformation described by the model) is small.

Section (A.9) shows that the spurious sharp-interface corrections AF, AH and AJ can be eliminated
from the thin interface limit of Egs. (6.57)-(6.59) by altering their form so that they are no longer derivable

5(Optional) The reader following Appendix (A) will have noticed that section (A.7.5) formally requires that 0, f (¢, ci)

be independent of the co-ordinate (£) normal to the interface. This is indeed the case here since it can be shown that

LOSRED0) 5 popen - 1)5/(6) = 3 b5\ (#8(0%) — i »
H op O Aerlt=1g (d’)AAc{eXp( R )‘( mra ) L@ (s

where Ac = ¢, — ¢s and ¢, and c¢s are the lowest order liquid and solid concentrations at the interface (which contain
a small curvature and velocity correction from their equilibrium values), while ng is the equilibrium chemical potential

and £§(0%) is the lowest order chemical potential at either the solid(”—") or liquid(”+") interface, which depends only on
curvature, as shown in sections (A.7.2) and (A.7.3).
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from a free energy functional. Specifically, the phase field model is converted into a modified system of
non-linear partial differential equations that are mathematically "rigged” so as to emulate a desired
sharp interface model. For the model in this section, these alterations have already been developed by
Echebarria and co-workers [57]. Specifically, Egs. (6.57)-6.59) are modified to

o 0 .

= wevie- 2 Sacee - 17 0) (6.63)
9 0 V

a% — v.(DLQ(¢)CVu)+V-(W¢a(¢)U(¢,c)£|Vz|) (6.64)

add J,

v <cz (- k)h(qb)]) (6.65)

changed g(¢) to h(¢)

In these phase field equations the chemical potental has been modified by the replacement of g(¢) by
h(¢), a free function that has the same limits as §(¢). Its form will be specified below. The added flux
source, J;, is added to correct for the effects of diffuse interface; U will be specified below. It is also
required that 0, fRX (¢, cit) satisfy Eq. (A.134), which is, indeed, the case for this model.

The next subsection will study a specific example of Egs. (6.63)-(6.65). To do so, it is instructive to
re-scale ¢ such that it varies from ¢; = —1 in the liquid to ¢s = 1 in the solid. This is done by defining
a "new” order parameter @new = 2do1d — 1 (0 < doia < 1). The previous interpolation functions and

dimensionless chemical potential © now become

9(9) = —%+%
3 5
i0) = 15 (o= 2+ %)
2c
« = w (o) (099

where now 7, Wy and H appearing in the equations are effective constants, rescaled from their original
definitions by a constant. Finally, the remaining functions in Eq. (6.63)-(6.65) are chosen as

o) = o
(1—¢)
Qo) 1+k—(1-k)o¢()
Ug) = (1-k)ie"
@) = a=-> o

6.7.7 Effective sharp interface parameters of non-variational model (optional)

Calculating the effective sharp interface parameters of Eqs. (6.63)-(6.65) (with Eqgs. (6.66) and (6.67))
requires knowledge of lowest order concentration and phase field, which are given by the given by the
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solutions of Eq. (A.52) for ¢i(z) and Eqs.(A.58) and (A.72) for ci'(x). These are given by ©,
colw) = F[1+k—(1—kh(so()]
¢o(z) = —tanh (x/\/i) (6.68)

where ¢y, is the concentration on the liquid side of the interface of the corresponding sharp interface
model. For the specific definitions adopted in Eqs. (6.66) and (6.67), the following relations are derived:
q(¢o, o) = (/RT,,)Q(¢o)Co(d0) = (/RT,,)ern (1 — ¢o)/2, which has limits ¢~ = 0 and ¢+ = Qe /RT,,.
Moreover, c,(x) —cs = e (1 — k) [1 — ¢] /2 while ¢,(z) — ¢s = cp.(k — 1) [1 + ] /2.

Using the above forms of ¢,(z) and ¢o(z) it is instructive to first check that the so-called correction
terms AF, AH and AJ identified in Appendix A -which would otherwise spoil the phase field model’s
connection to the tradition sharp interface model- vanish. From Eqgs. (A.150)

AF=F+—F = w {/OOO (o) + 1) dz — /ZO (1- ¢o(x))dm} (6.69)

It is clear from the symmetry imposed on ¢, about x = 0 that AF = FT — F~ = 0. In the same manner
AH becomes

AH=H"—-H = % {/OOO (¢o(2) + 1) dax — /O (1= ¢o(x)) dm} (6.70)

— 00

which is proportional to AF and also vanishes. Finally, the AJ correction becomes,

0o 0
AJ =gt — g = e {/ (6o(x) + 1) da —/ (1— qbo(x))dx} (6.71)
RT,, | Jo oo

which also vanishes. Note that the above equations (which come from Appendix (A)) formally use
cr,, the lowest order concentration on the liquid side of the interface, which has a small curvature and
velocity dependent shift from its equilibrium flat interface value cl. This does not affect the vanishing
of the correction terms as ¢y, scales out of Egs.(6.69)-(6.71). Furthermore, the difference between using
cl versus cr in the integrals F = F* = F~ and H = H" = H- and J = J* = J~ will be seen
below to yield only higher order curvature and velocity corrections to the effective sharp interface model
(discussed further below). It is thus reasonable to simply approximate c; — ¢/ in integrals that arise
from the asymptotic analysis of this model.

The effective sharp interface model emulated by Egs. (6.63)-(6.65) (using the definitions in Egs. (6.66)
and (6.67)) is thus specified by Eq. (A.130) for the Gibbs-Thomson condition and the Eq. (A.131) for the
flux conservation equation, with AF = AH = AJ = 0 as shown above. It now remains only to compute
the effective capillary length d, and interface kinetic coefficient, 8. To do so, the chemical potential on
left hand side of Eq. (A.130) is expanded near the solid or liquid equilibrium value. Considering the
liquid side gives, u°(0%) — pp, = AT(c?(0%) — ¢}), where AT = 0.fi(¢o = —1,¢,) = (RT,,/Qc).

Substituting this into the left hand side of the Gibbs-Thomson condition gives
c?(0F)

[
Co

=1-(1—k)dor— (1 —k)Bun (6.72)

6For those simultaneously reading Appendix (A), lowest order is in the sense of the matched asymptotic series expansion
of ¢ and ¢ expressed in Egs. (A.16). For simplicity, the notation cj*(z) and ¢ (x) has been dropped in this subsection in
favour of the simpler notation ¢, (z) and ¢, (z).
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where

W,
dy = oy X¢ (6.73)
b= W (1 D H) &7
with X and ay defined by
A= u—kfélenh%;ﬁyé (6.75)
- K;;if1 (6.76)
and
J = 16/15
F = - o 1)d
JARCGERL
_ % by 3
ko= [ 5 g(%){ / aso(:c)dz} d
5
96 = 6-2 4% (6.77)

It is noted that to arrive at the coefficients in Eqs. (6.73)-(6.76), one begins with Eq. (A.130) were K is
given by Eq. (A.151), while F is given by either of Egs. (A.150) and o, by Eq. (A.64). Straightforward
algebra then gives

K A T (1 — k)? K F
+ FAc _ <R ( ) CL) +J (6.78)

Q 2]y

Unlike the case for a pure material, it is not possible for alloys to simulate the limit 5 = 0 exactly. That
is because of the extra factor ¢y /¢! in Eq. (6.74). Indeed, to do so precisely requires that D = asA(cr,/c?),
which requires that the curvature-dependent deviation of ¢z, from ¢! is computed at each point at the
solid-liquid interface. However, it is relatively straightforward to show from the O(e) treatment of the
¢ equation (see Appendix (A)) that cr/c) ~ 1 — c1dok — co(T/AWy)vy,, where ¢ and ¢y are constants.
As discussed above, in most cases the curvature and velocity dependent corrections can be approximated
to be very small, particularly for experimentally relevant solidification rates, such as those achieved in
continuous casting and even some forms of thin slab and strip casting. As a result such curvature and
velocity correction can be neglected and it is reasonable to set cz,/c) ~ 1 in Eq. (6.74).

For the function chosen here F' = /2 In 2, K = 0.1360 and op = 2\5/3. For readers wishing to
connect this derivation to the one published in Ref. [57] it should be noted that their 5\, call it 5\E, is
related to the one here by AE = (15/16)\. Substituting this re-scaling into their expressions for d, and /3
gives Eq. (6.73) where o4 is replaced by the variable a1 = 04/J ~ 0.8839 and Eq. (6.74) with a replaced
by (K + J F)/(20,) ~ 0.6267.

Using Eqgs. (6.73) and Eq. (6.74), two of A, 7 and W can be determined by connecting the phase field
equations to the measurable constants d, and 3. One parameter, however, still remains undetermined.

¢
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This implies, for example, that it is possible to easily model a unique surface tension and kinetic coefficient
(even B = 0), with a diffuse Wy (compared to d,). This is not possible in the strict limit of the
sharp interface limite (when W, — 0). This was demonstrated in section (5.7) for thermally controlled
solidification. The ability to obtain converged results independent of the ratio Wy /d, for the binary alloy
model was demonstrated quantitatively in Refs. [112, 57, 74, 194], and will be studied in the next section.
As discussed before, the incentive to make W, diffuse (or ”thin”) is to dramatically reduce simulations
times, a feature critical to quantitative modeling of solidification.

6.8 Numerical Simulations of Dilute Alloy Phase Field Model

Numerical simulation of the a binary alloy phase field model proceeds analogously to that of model C
for a pure material. A code for studying the dilute alloy model are found in the directory M odelC _alloy
on the CD that accompanies this book. The pseudo-code for modeling an alloy is shown in Fig. (6.6)
using the model studied in section (6.7.6) as an example. The main differences here is the change of

Binary Alloy pseudo code

Define and initialize variables
and arrays

|

Set initial conditions of PSI, C & EU arrays

|

+

Update PSI from previous time.
(uses EU as driving force)

|

Update C from previous time.
(uses anti-trapping)
Compute EU for next time

Increment discrete
time counter

Print out fields and other relevant
information measured from
PSI & C arrays

I
+
END

Figure 6.6: Flowchart of algorithm requied to simulte Model C for binary alloy solidification.

driving force to e“ — 1 in the phase field equation and the use of the fictitious anti-trapping flux in the
concentration equation.

6.8.1 Discrete equations

The discrete version of equation Eqgs. (6.63) for ¢ is given by
R O ) I ()
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At L » R . N
W{M(JR(Z,J) - JL(Z,])) + E(JT(Z,]) - JB(%J))
- 48" (i, 7)) - ﬁ (EU™(4,5) — 1)§'(¢”(i,j))}, (6.79)

where (¢ = t/7) and space (z = x/Wy). The array EU™(i,5) = exp [u(¢™(i,7),c"(4,7))] and u is the
reduced chemical potential given by the last of Egs. (6.66). It is constructed by the phase field (¢™ (i, j))
and concentration (¢"(4,7)) at the time step n. The flues JR, JL, JT, JB are calculated exactly as
in Egs. (5.54) using the definitions in Egs. (5.55)-(5.56). Surface energy anisotropy can similarly be
simulated here using the same form of the anisotropy as in section (5.7), calculated by Egs. (5.57).

The update of the concentration equation can be efficiently done using a finite volume method since
it is a flux conserving equation. The discrete update equation for the concentration ¢"*1(i, 5) is given by

) = (i) — e AR — )+ () (6.50)

where it is assumed that Az = Ay. The notation J§ = J - 7, with 7 being the unit normal of the right
edge of the finite volume in Fig. (B.1), while .J is given by [112, 57, 118

w00 V¢

J=-D Vu —ay(1—k)e" - —— 6.81
>
where concentration and diffusion have been rescaled according to
D = DLT/W(g
¢ — cxtal /el (6.82)

The fluxes JJ*, J{ and Jg are similarly defined as the normal components of the flux along the left, top
and bottom edges of the finite volume, respectively. It is seen in Fig. (B.1) that J requires that J be
evaluated at the locations (i+1/2, j) and (i, j £1/2). However, no explicit information is known at these
points, as the mesh is designed to track ¢ and c at discrete co-ordinates which, as shown in the figure,
jump by whole integers. To avoid this problem, interpolation from neighboring points at (¢ & 1,5 &+ 1)
needs to used. The procedure for doing this follows.

Referring to the right hand edge of the control volume in Fig. (B.1), the quantities that enter Jg (i.e.
the component of .J in the direction of i) are evaluated at (i + 1/2,7) as follows,

Qi+ 1/2.0) " (1 +1/2,5) =@ (LD L)) (Cn R w(i’j)))

2
) . EU™ (i 1.7 — EU™ (. 5
VuZE 8u _ U ('L+ 7.]) U (Zaj)
O |i41/2,5 A:c(EU"(z’—i—Lj)—FEU" (i,j))/2
u% ntl [ @ L) (L) peu(@” (1) (1) 8t¢|2111’j)+6t¢|83§
<ot B 2 2
1(it1/2.4)
" _ o+ 1,5) = ¢(ij) (6.83)
Ox i+1/2,j Az
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where J¢/0t at time n + 1 is evaluated after the ¢ equation is updated " Note that for calculating y
derivatives of ¢ at the right edge of the volume (for V@) requires both the neighbors and next nearest
neighbors of the point (i + 1,5) (labelled by "x” in Fig. (B.1)). Thus,

09 _ 06+ =i 1)+ (@li+ 17+ -9 +1,j-1))
Jy 2(2Ay)

(6.84)

i+1/2,5

Equation (6.84) is simply the average of two y direction derivatives at (i, ;) and (¢ +1, j). With the above
discretizations, Jg becomes

n+1

J=-DQ( i+ 120 i+1/25) | 25 -k |22 AR (6.85)

or |, ) ot
/2. (i+1/2.)
where
ag"
ox |. .
Al = ARTLY (6.86)

() ()
0T |i11/2,5 Y iv1/2,5
The fluxes in the other directions are calculated analogously.

Analogously to the case of the pure material, the natural choice of boundary conditions for concen-
tration are zero flux boundary cnditions (since generally mass does not enter or leave the system, and
mirror boundary conditions. This requires that the ¢, ¢ and EU arrays are buffered with one layer of
ghost nodes in each spatial dimension. The ghost nodes are set prior to each time iteration as shown in
Eq. (5.7.2). Tt also noted that the stability of the numerical scheme presented here is analogous to the
one for a pure material studied in section (5.7). In this case mass transfer, as the fastest process, controls
the stability by requiring that At < Az?/ (4 D).

6.8.2 Convergence properties of model

Figure (6.7) shows an image sequence in the simulation of dendrite in a dilute binary alloy. An initial
seed crystal is placed in an initially supersaturated liquid phase. The concentration shown is relative
to c., the equilibrium concentration on the liquid side of the interface at the quench temperature. The
average alloy concentration c,, was chosen such that the supersaturation was

o

0o~ Co o
0= =05 (6.87)

The anisotropy was set to €4 = 0.05. An initial seed was placed in the bottom-left corner of the simulation
domain. Its radius was R = 10W,. The ¢ field was set to ¢ = 1 in the solid and ¢ = —1 in the liquid.
The chemical potential was initialized from the the initial condition e*(t = 0) = 1 — (1 — k), which
also uniquely defines the initial concentration field c¢. The coupling coefficient was chosen to be A= 3.19,
while AZ = 0.4 and At = 0.008.

Tthe function O:¢ can be considered a ”known” function from the point of view of the concentration equation since it
updated in a separate application of the discrete phase field equation prior to entering the subroutine where concentration
is updated
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Figure 6.7: Isothermal dendrite growth sequence in an alloy. The colour map represents concentration.
Cold colours represent low concentration and warm colours high concentration.

The sharp interface dynamics of the solid-liquid interface in Fig. (6.7) are governed by Egs. (6.73)
and (6.74), which relate the capillary length and interface kinetics coefficient to the interface width Wy,
and characteristic time scale 7 using precisely the same form that was used in the case of a pure material
in Eq. (5.62). 8. This is not a coincidence but rather by construction of the specific free energy of
the dilute alloy model studied in this section. Indeed, much of the essential physics of the pure model
in section (6.8.2) remain unchanged in binary alloy (where, essentially thermal diffusion in that case is
replaced by mass transport in this case). As with solidification of a the pure material, it turns out that
simulations of the dimensionless steady state dendritic tip speed will be independent of the choice of 5\,
or equivalently W, for sufficiently small Wy. This is demonstrated in Fig. (6.8), which compares the
dendrtie tip speed for the same undercooling and two values of \. This figure is the alloy analogue of
Fig. (5.7).

It also is instructive to examine the convergence properties afforded by the use of the the antri-trapping
flux in Eq. (6.64). Recall that this flux term was introduced as a mathematical remedy to eliminate the
so-called spurious kinetics and excess solute trapping that occurs in the limit of a diffuse interface in an
alloy phase field model with very asymmetric diffusion between the solid and liquid phases. Figure (6.9)
compares the centre-line concentration in of the horizontal branch of the dendrite shown in Fig. (6.7)
with and without the use of anti-trapping. The characteristic concentration jump and solute rejection
profile in the liquid is shown. It is clear from Fig. (6.9) that neglecting the use of the anti-traping flux
in the phase field equations (i.e. a(¢) = 0) exaggerates the impurity level in the solid. This is mainly
due to the effect of solute trapping imposed by the so-called AF' correction term, which was discussed
in section (6.7.5). This effect scales with the interface width and so it will be amplified even further for
larger values of Wy or, equivalently 5\, which is typical of more efficient calculations.

8This equivalence is true within higher order curvature and interface velocity corrections.
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Figure 6.8: Dendrite tip speeds for two values of the inverse nucleation barrier A\. The parameter X\ is
chosen via Egs. (6.73) and (6.74) to fix the interface kinetics time (7) and interface width (Wy) in a
manner consistent with the sharp interface model. Scaling the tip speed T/Wy (equivalent to d,/D) thus
makes the dimensionless tip speed universal and dependent only on the supersaturation.

6.9 Other Alloy Phase Field Formulations

Thus far phase field theories have been presented in terms of two physically motivated parameters; the
order parameter and concentration field. This section studies an alloy phase field methodology that is
somewhat different from the standard form that has been discussed thus far, but which is very often
used in the literature. Once again this approach begins with the standard alloy phase field model in
Eqgs. (6.34)-(6.36). The use of these equations with a general bulk free energy was originally introduced
by Boettinger and co-workers [209, 210] (hereafter refereed to as the WMB model). As discussed above,
this model has the severe limitation that in equilibrium 0 4f(¢,,c,) # 0 for a general bulk free energy.
That makes it impossible to reproduce an given interface energy reliably using very diffuse interfaces. In
the previous section it was shown that one approach to remedy this problem is to judiciously choose the
entropy and total energy interpolating functions. In this section studies a different phase field formulation
for binary alloys due to Kim and co-workers [120]. In this approach rather than modify interpolation
functions, two new, fictitious concentration fields are introduced. These are made implicit functions of
the phase field ¢ and concentration ¢ in such as way as to achieve a similar decoupling as in the example
studied above.

6.9.1 Introducing fictitious concentrations

Kim and co-workers extended the quantitative applicability of the WMB model by introducing two
fictitious concentration fields Cp(#) and Cs(&), associated with each phase. It it assumed in their
formalism that the physical concentration ¢ can be expressed as an interpolation of C';, and C according
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Figure 6.9: Dendrite centre line concentration for the cases of A = 3.19 with (bottom) and without
(top) the use of anti-trapping. The straight dashed line is the prediction of the curvature-corrected solid
concentration in the solid, as predicted by the Gibbs-Thomson condition.

to

¢ = h(@)Cy + (1 - h(¢)) Cs (6.88)

where h(¢) is an interpolation function that satisfies h(¢ = ¢5) = 1 in the solid phase and h(¢ = ¢1) =0
in the liquid phase. The idea of Eq. (6.88) is that the interface region is actually a certain fraction of
solid (h(¢)) and liquid (1 — h(¢)), The total composition in the interface is the weighted combination of
the solid and liquid concentrations, Cs and C,. The concentrations Cr, and C are constrained such that
the solid and liquid fractions though the interface satisfy equal chemical potentials in terms of C, and

Cs ie.,
D1(C) _ 0F1(Cy)
dc Jdc

where f5(Cs) and f(Cp) are the free energies of the solid and liquid phase, respectively. (The notation
0cfs(Cs) = 0cfs(c)|.—¢,)- It should be noted that Eqgs. (6.88) and (6.89) make C', and C; functions of
¢ and c.

Another modification to the original WMB model make by Kim and co-workers is that the original
bulk free energy f(¢,c) appearing in the phase field model is written as

f(d,¢) = Hg(¢) + h()fs(Cs) + (1 — h(¢)) fL(CL) (6.90)

It is clear that the above definition of f(¢, ¢) reduces to the appropriate bulk phase expression far from the
interface where ¢ transitions between phases. The decomposition of f(¢,¢) in terms of the non-physical
fields Cy, and Cj, and the associated conditions on C, and Cj, offers an alternative to manipulating the
choice of interpolation functions (i.e. the method used in section (6.7) for the ideal, dilute binary alloy).
The outcomes in both cases is the same; the ability to decouple concentration from the surface tension
calculation and the ability to relate surface energy to interface width even for arbitrarily diffuse iterfaces.

(6.89)
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The only [minor] trade-off in this case is that some extra work has to be done to determine Cs(¢, ¢) and
Cr(¢,c) at any time. This is discussed next.

6.9.2 Formulation of phase field equations

In order to be able to solve the phase field equations of the WMB model, it is required to relate f.(¢,c),
fo(d,¢) and fcc(é,¢) to Cs and Cp. This is done by differentiating both sides of Egs. (6.88) and (6.89)
implicitly with respect to ¢ and ¢, giving

_ 0C oCy,
_ W) - 9Cu (1 _ gy
0 02 f4(Cy) OC, _ 9% fr(Cr) oCy,
oc?  dc oc? oc
_ 0?f,(Cs) 0Cs  9*fL(CL) OCy,
0= @ 86 e s (6.9)
where the prime denotes differentiation with respect to ¢. The solution of these equations gives
0C _ O fr.(CL)
dc R(¢,Cr,Cs)
ac'L _ accfs (Oe)
dc  R(¢,Cr,Cy)
aCS _ h/((vb) (CL - Cs) acch(CL)
a(b R(¢7 CL7 CS)
o0, _ h‘/((b) (CL - Cs) accfs(cs) (6 92)
9¢ R(¢,C1,Cs) '

where R(¢,Cr,Cs) = h(9)0ec fL(CL) + (1 — h(¢)) Ocefs(Cs). From Eqgs. (6.92) is it now straightforward
to derive the following useful relations

I (o) - (fL(cL> SEACARE LU cs)>h’<¢>> (6.93)
_ 0f(¢,0) _ dfp(CL) _ dfs(Cs)
po= oc de  dc (6.94)
82f(¢7 C) _ acc.fL(C(L)&,‘CJ‘;'(CY\s’)
o R(6,C1,Cy) (699
0%f(¢,c)/0p0c  _ (Cr, — C)W'(6) (6.96)

2f (6, c) /02
with which the final form of the phase field and impurity diffusion equations can be written in terms of
Cr, and C,,

- (n(cz) oy - M 0, 0, ) W) (69

"ot do " H
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de Q) af(,¢)

ot DLV'_aCCf(qb,c)V( dc )] (6.98)
_ Q) 0f1.4(Cr.)
= D.V- _8ccf(¢’c>v o >] (6.99)
~ Dy Q(¢)<h(¢)VCs+(1—h(¢))VCL> (6.100)

Equations (6.98)-(6.100) are three equivalent choices for the dynamics of impurity concentration. The last
version of the chemical diffusion equation (Eq. (6.100)) is obtained by noting that V f. = f..Ve+ feo Vo
and using Eq. (6.88). It is emphasized that expression dy f (¢, c) in the large curly brackets of Eq. (6.97)
is in fact a function of ¢ and ¢ through the implicit dependence of Cs and C}, on these fields.

To model anisotropic surface tension in Eqgs. (6.97) and (6.99), the gradient term W;Vzd) in Eq. (6.97)
has to be modified as in Eq. (6.37).

6.9.3 Steady state properties of model and surface tension

At equilibrium 9¢/dt = 0 the concentration equation gives 9. f1(Cr) = 0.fs(Cs) = ,ugq, where ng is a
constant. This can only be true at all points if C(z) = C7* and Cs(x) = C where C;* and C¢ are
constants. The corresponding steady state ¢ equation thus becomes

¢,
dx?

—g'(¢o) + % <fL(CEq) — fs(Ce1) — %fzq) (C9 — Cea) ) K (o) (6.101)

2
W

Multiplying Eq. (6.101) by d¢,/dz and integrating from —oo < z < co immediately gives

fo(Crh) = fs(Cga
O LD (6.102)
L s

Equation (6.102) along with 9. fL(C}") = 9.fs(C%) = pg, are the standard conditions for determining
the equilibrium solid and liquid concentrations, as well as the equilibrium chemical potential through the
interface, iy,
Since at equilibrium Cp, and C§ are constant, the the steady state concentration profile is simply given
by
ol@) = h(90)C + (1 = h(g,)) €5 (6.103)

This is analogous to the way that the model studied in section(6.7.3) has a steady state concentration
profile that depends only on the order parameter ¢. Moreover, substituting Eq. (6.102) back into the
steady state ¢ equation gives

d*¢,
dzx?
which is identical to Eq. (6.49) and does not involve the concentration in ¢,. As a result, using Eq. (6.32)
the surface energy for the alloy phase field model of Eqgs.(6.97) and (6.100) can be determined uniquely
in terms of Wy and H, for arbitrarily diffuse interfaces. Thus the model of Kim and co-workers can
simulate an arbitrary free energy and emulate any surface tension, for diffuse interfaces.

2
W

—¢'(¢o) =0, (6.104)
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6.9.4 Thin interface limit

It was seen that because at steady state with a flat interface, 9y f(¢o, ¢o) = 0, the phase field model studied
in this section enjoys the property that the expression for the surface energy can be simply expressed
in terms the gradient energy coeflicient and potential barrier height, for all interface widths Wy. As it
stands however, this model is not immune to aforementioned thin interface kinetics that otherwise alter
the form of its effective sharp interface limit in the diffuse interface limit. As discussed above, since C7,
and Cy are functions of ¢ and ¢, both 94(¢, ) and p = 9. f(¢, ¢), and hence the phase field model itself,
are fundamentally of the form studied in Appendix (A) . Thus, the usual kinetic and thin interface
corrections AF, AH and AJ discussed in Appendix (A) (see section (A.8) for a summary) also plague
this alloy phase field model.

Kim [118] recently extended the phase field model presented in this section so that the concentration
equation contains an anti-trapping flux term like that used in the dilute alloy model of section (6.7.5).
This modification is designed to eliminate the aforementioned spurious kinetic corrections. As discussed
in Appendix (A), the introduction of a fictitious flux term in the mass transport equation leads to a
non-varational form of the original phase field equations model but leads to a mathematical equivalence
of the thin interface limit of the phase field equations to the sharp interface model. Modification of
the model involves two steps. The first is the introduction of an anti-trapping flux to the concentration
equation, i.e. it of the form

Jdc

ve D V-
ot LV

Q(¢) afL,S(CL,S) 7T
ENIC) C)V< 9 > Ja] (6.105)

where J, denoted the anti-trapping flux. The second change required is that the interpolation function
in the chemical potential which modulates ¢,(z) between one phase and another via ¢, must be altered.
In this case, the chemical potential 0. fL s(CL,s) (either s or L) is implicitly related to c(z) and ¢(x)
through h(¢,) in Eq. (6.88). Thus h(¢) can be altered to some arbitrary h(¢), which has the same limits
as h(¢) in the bulk phases. The anti-trapping, the new interpolation function h(¢) and Q(¢) provide
three degrees if freedom which can be chosen to make AF = AH = AJ = 0. Given the length of such
calculations, these details will not be discussed further here. The interested reader is referred to the
recent calculation of Ohno and co-workers [161] for the case of an ideal, dilute binary alloy. Furthermore,
Kim has recently extended the model described in this section to multiple solute components [118].

6.9.5 Numerical determination of C; and C},

It is instructive to conclude this section by briefly discussing the numerical solution of Egs. (6.97) and
(6.100). The simplest numerical algorithm for solving these these equations is as follows: Starting with
the fields {¢, ¢, CL,Cs} at time t = nAt, Egs. (6.97) is updated using a simple finite difference method
(see Appendix (B.1)). Equation (6.100) is then updated using a finite differences or a finite volume
method (see Appendix (B.2)). This yields ¢ and ¢ at t = (n + 1)At. Using the updated ¢ and ¢ fields,
Egs. (6.88) and (6.89) are next solved self-consistently at all lattice sites to yield Cp and Cs at time
t = (n+ 1)At. The solution of Cf, and Cs in terms of ¢ and ¢ at any given lattice cite on the numerical
grid is done by solving

f1(Cs,Cr) = h(@)Cs+ (1 —h(9))CL —c=0

9As required by the conditions of the main calculation of Appendix (A), it can be also shown that to lowest order
04 f(#g", ci*) does not depend on the co-ordinate £ normal to the interface.
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f2(Cs,CL) = 0cfs(Cs) = 0.fr(CL) =0 (6.106)

The simplest way of solving these non-linear equations is using Newton’s method, outlined in in Ap-
pendix (C.3). This is an iterative scheme that start with an initial estimate for Cy and Cf, and progres-
sively improves this estimate via the iterative mapping

oyt cy 1 0. fL(CL) 1—h(9) H(CE,Cr) (6,107
+ — 6.107
cpt! cp ) WD\ —oenicn e )\ ey
where W(C?,C}) = h(9)0 cc fL(C}) + (1 — h($)) O.ccfs(CZ). Here n denotes the iteration step. Equa-
tion (6.107) is iterated until C? and C} stop changing appreciably, to some accuracy. This method while
simple demands that the initial guess is close to the real answer. This should not be a problem if ¢ and
¢ change slowly at each lattice site. The solution of Equation (6.107) at each time step of the phase field
equations (6.97) and (6.100) is very inefficient. The best way to proceed is to solve for a pre-determined
2D array one of whose dimensions represents small increments of ¢ between [0, 1] and the other of ¢ be-
tween [0, 1]. For each entry of the array, which represents a unique (¢, ¢) combination, Equation (6.107)
is iterated to yield the corresponding a unique (Cs(¢,c), Cr(¢,c)) pair.

6.10 Properties of Dendritic Solidification in Binary Alloys

The first step in the process of casting metal alloys is the solidification of dendrites that nucleate, grow and
impinge on one another. The scale of these structures is largely controlled by inter-dendritic morphology
and interactions. Toward the centre of the cast, the temperature is nearly uniform and a many individual
dendrites form, a condition known as equiared dendrite growth. Near the mould wall, dendrites grow
cooperatively in a direction perpendicular to the chill surface, following the gradient that is is established
as heat is drawn out of the cast as it cools. Understanding this process of dendrite spacing selection has
been the topic of great industrial interest because of the link of microstructure to mechanical properties.
There have been many theories and models proposed to explain directional solidification in alloy.
Phase field modeling has also made its contribution to this field and, indeed, promises to be a very robust
way to simulate the complexities of competitive dendritic growth which is beyond the scope of analytical
and so-called geometrical theories. This section reviews some of the theoretical work on directional
solidification,including more recent contributions to this topic made with phase field modeling.

6.10.1 Geometric models of directional solidification

A traditional paradigm for the study of casting microstructures is directional solidification. The typical
laboratory set up for directional solidification is studied using an apparatus analogous to that illustrated
in Fig. (6.10). In this process a sample is pulled at a constant velocity through a fixed temperature
gradient. The value of the temperature gradient (G), pulling speed (V) and alloy composition (C,)
lead to a complex dependence of the dendritic spacing and morphology on the experimental parameters
[196, 21, 195, 123, 139, 29, 141, 140, 197]. Low pulling speeds lead to cellular arrays of dendrites. Increased
pulling speed leads to dendrite arrays with side-branching. At large enough speeds, absolute stability is
reached and a planar solidification front is attained. A typical situation where an initially flat interface
becomes unstable and destabilizes into an array of dendrites is shown in Fig. (6.11). A very large body of
work has been produced to elucidate the spacing selection in this process. Most experiments on organic
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Figure 6.10: Fxperimental set for directional solidification or organic alloys. The alloy is placed between
two glass plates and solidified at a constant speed V' through a constant thermal gradient G, where T, < T},.

Figure 6.11: Directional solidification of Succinonitrile-acetone. Adapted from [196].

alloys reveal that the primary dendrtie spacing \; is reproducible as a function of [constant] pulling
speed V| or assuming this changes very slowly [196, 139]. The need to explain the selection process in
directional solidification has lead to a plethora of so-called geometric models that assume the existence
of a steady state dendrite array, and attempt to derive A; in terms of the geometry of the array and the
fundamental length scales of the solidification problem.

Theories of steady state primary spacing in directional solidification of alloy usually assume a power
law scaling of the form \; = KG~*V =" [195], where the exponents a and b are different in the cellular
and dendritic regimes and K is a constant of proportionality. The constants K, a and b typically vary
between theories. Assuming the dendrite tips can be described as spheres, Hunt [100] proposed a primary
spacing model of the form

T, “1e,oD\Y*
>\1:B< mL(kL Jeoo ) G-iy—i (6.108)

where B = 2.8. Kurz and Fisher [131] used an elliptical approximation to describe dendrite tip and arrived
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at the same equation, except B = 4.3. The derivation of Hunt’s geometrical model proceeds by assuming
that the dendrites are arranged geometrically in a hexagonal array, as shown in a 2D cross section in
Fig. (6.12). The minor axis of an ellipse is b and the major axis is a = AT/G, where AT = T, — Tg with
Ty, being the temperature at the dendrite tips, which is close to the liquidus temperature, and T is the
temperature at the groove of the dendrites, typically close to the eutectic temperature for hypereutectic
alloys 0. The radius of curvature at the tip of an ellipse is R = b?/a and, by construction, A\; = 2b,
which gives Ay = 24/AT R/G. At this point the theory heuristically relates R to the fastest growing

AT =T, — T, = Ga

Figure 6.12: Elliptic dendrite array used to represent steady state dendrite array in geometrical models.

linearly unstable wavelength, the Mullins and Sekerka wavelength, determined by the maximum of the
linear dispersion analog of Eq. (5.66) for directional solidification [138]. This is given by Ams = V/Ip do
. Setting R = A gives A1 in the form of Eq. (6.108).

More complex geometrical theories have also been formulated which consider such things as solute-
modified surface tension [124] or which give rise to a maximum in A; by considering growth regimes
separately [131, 123, 139]. Such geometrical theories are usually in qualitative agreement with experi-
ments over certain ranges of pulling velocity. However, K —or other tunable parameters— must be fit to
experimental data to obtain quantitative agreement [123, 139]. It is also noteworthy that even for slow
cooling rates, Eq. (6.108) does not describe the transient development of primary branches. To address
the transient scaling regime, heuristic formulae of the form A\; ~ (GR)~!/2 have been developed. As with
their steady state counterparts, the are found to work well in metal alloys only when phenomenological
parameters of the theory are fit to experimental data [29].

While geometrical models have provided important insight about spacing selection problem in solid-
ification, they have several deficiencies. First, their exponents are not unique over the entire regime of
V and G. Experiments show a crossover between different power law regimes as pulling speed is varied
[123, 139, 197]. A more serious concern is that geometrical models only work quantitatively by introduc-
ing ad-hoc adjustable constants, such as B in Eq. (6.108). Clearly, a self-consistent theory should be able
to determine \; with as few as possible fitting parameters. Another limitation of geometric models of
directional solidification is that their predictions do not actually correspond to realistic casting situations.

10This is an alloy whose average concentration lies above the saturation limit and below the eutectic concentration. For
example, the hypereutectic range in Fig. (6.2) is 18.3wt%Sn < ¢, < 60wt%Sn.

' This approximation of the Mullins and Sekerka wavelength is accurate in he limit where the thermal length Iy =
mpco(1l — k)/k is much larger than the thermal diffusion length Ip = 2D /V.
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Experiments of solidified casts clearly show that the notion of a "steady state” array is an abstraction
that does not exist. Experimental data would suggest that spacing selection should be measured and
reported using the notion of ”ensemble averages”, which captures their statistical nature, i.e. A1 — (A1).

6.10.2 Spacing selection theories of directional solidification

While experiments reveal that under dendrite arrays go to a particular, reproducible, primary spacing as
a function of a constant pulling velocity V, it is still not clear if or how this spacing can be uniquely
established under dynamical selection. Self-consistent analytical theories [138, 207, 208] and specialized
experiments aimed to test the stability of dendrite arrays [143, 140] suggest that a particular primary
spacing, A1, of a dendrite array can be stable over a rage of pulling speeds V. Alternatively, these theories
and experiments imply that for a given pulling speed V there is a range of stable primary spacings. This
would suggest an initial dependence on A, reminiscent of highly non-linear dynamical systems.

Warren and co-workers were the first to perform a linear stability analysis of a steady state array of
weakly interacting dendrites [207]. Their theory can only be applied to high pulling speeds where dendrite
tips interact weakly '2 and where each tip is assumed to evolve according to microscopic solvability theory.
They predicted that for a given initial A1, there is a lower critical velocity below which A; period doubles
via cell elimination, whereby every other dendrite tip survives. Interestingly, a stability analysis of an
accelerating interface [208] suggested that A; will period double to its final value before the dendrite
array reaches the corresponding steady state pulling speed. The predictions of Warren and Langer set
lower bounds for the spacing observed in traditional directional solidification experiments such as those
conducted by Trivedi and co-workers [196].

A series of experiments by Losert and co-workers supported the predictions of the Warren and Langer
theory [143, 140, 141, 142]. In one set of experiments [143] they first solidify an organic alloy sample
until a primary spacing, A{ is achieved. They then begin to decrease the pulling speed V in steps,
observing that the dendrite array gradually increases its A\;. Below some critical velocity V. the array
becomes unstable and A period doubles to approximately A1 ~ 2A{. The transition velocity is close to
the one predicted theoretically [207, 208]. The same group later tested the stability of the dendrite array
by using laser heating to modulate the amplitude of the dendrite tip envelope [140]. The decay of the
envelope amplitude back to the originally established )\g followed the linear growth exponent predicted
by the Warren and Langer theory. Interestingly the spacing selected in all their dendrite arrays always
fluctuated within a range of values, not a well defined one. Figure (6.13) shows data reprinted from
Losert et. al [143], which shows how A; changes (bottom figure) as pulling velocity is decreased (top
figure) from its original value from which the initial steady state array was achieved. Other experiments
by Huang and co-workers similarly showed that after establishing a steady state dendrite array with A{
at pulling speed Vj,, the new A} that emerges after changing the pulling speed from V,, — V,, depends on
the initial V.

Dynamical selection theories and associated experiments have been very successful in predicting how
an established dendrite array may change upon modification of the original pulling speed V. They have
not, however, addressed the questions of how the initial dendrite array is established from arbitrary initial
conditions such as that of a flat interface perturbed by thermal fluctuations, or a collection of nucleated
crystals near a mould wall. Moreover, it is not clear how the experiments of Losert et. al depend on the
rate of change of the pulling speed; as mentioned previously, experiments consistently appear to give rise
to reproducible values of A\; vs V' when V is held constant long enough under a given set of processing

12The theory assumes solute contributions from different dendrite tips are independent line sources.
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Figure 6.13: (a) Step-wise decrease in pulling speed of a directionally solidified SCN-C152 alloy. an initial
dedrite array is established at the speed corresponding tot = 0. (b) the corresponding change in the initial
dendrite array spacing A\1. Below a critical speed there is an approximate period doubling of the spacing.
Figure adapted from Ref. [143].

conditions. Present theoretical and experimental work leaves open the possibility that under a given class
of fixed initial interface conditions and processing conditions, there can be a reproducible set of spacings
versus pulling speeds. However, it seems likely that the selection function A = f(V, G) will be dependent
on initial conditions and the particular solidification process.

6.10.3 Phase field simulations of directional solidification

In recent years, phase field modeling of solidification has emerged as perhaps the most robust way to
simulate the complex morphologies and inter-dendritic interactions ”virtually”, thus avoiding the various
challenges that enter analytical theories. Moreover, in the case of a dilute alloy, it is possible to use
equations such as Eqs.(6.63)-(6.65) to model dendritic growth quantitatively [57]. Figure (6.14) shows a
phase field simulation of a directionally solidified dendrite array in SCN-ACE. As in Fig. (6.11), there is a
clear competition between primary branches that causes the familiar branch elimination, which ultimately
leads to a dynamic change of A\; far away from the initial spacing predicted by the Mullins and Sekerka
linear instability theory.

Phase field simulations such as the one shown in Fig. (6.14) have become quantitatively comparable
to experiments owing almost entirely to two innovations. The first is the development of thin interface
relations such as the ones discussed earlier in this chapter. Another crucial innovation is the efficient use of
adaptive mesh refinement (AMR). As discussed in section (5.7.3), AMR is a computational methodology
that makes it possible for numerical meshing to track only those parts of the system where a phase
transformation occurs. Figure (6.15) illustrates these ideas by showing how the grid the simulation of
Fig. (6.14) adapts itself around the solid-liquid interfaces. The ability to perform calculations only near
the interface reduces the dimensionality of the domain, making it possible to simulate such problems as
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Figure 6.14: Directional solidification of Succinonitrile-dwt%acetone. Pulling speed is V. = 4um/s and
G = 5K/mm. Warm/cold colors represent high/low concentration, respectively.

Figure 6.15: Time sequence of the adaptive mesh corresponding to the boxed region in Fig. (6.14). Time
sequences shown are different from those in Fig. (6.14).

dendrite growth, precipitate growth and directional solidification type problems on very large domains
and on much smaler real time scales.

Recently Greenwood and co-workers conducted phase field simulations to analyze the spacing selection
problem using power spectrum analysis of the solidification front [86]. The primary branch spacing \; is
identified by using mean of the power spectrum P(k) = h(k)h'(k), where h(k) is the Fourier transform
of the interface profile h(z), defined as the distance to the interface along the z-axis from some origin
and the z coordinate is transverse to the growth direction. The 1D wavevector k = 27/ is a measure of
the inverse length scale A. The profile h(z) is made monotonic by following the contours of the dendritic
envelopes. The power spectrum P(k) can be used to construct the inverse wavelength probability density.
This density can be used to analyze the statistical character of the spacing selection problem. The
distribution P(k) contains information about the importance of all length scales influencing the dendrite
array. Figure (6.16) shows the time evolution of a typical dendritic array and its corresponding power
spectrum. The dendrite array in the figure has not yet reached a true steady state, nor is it clear if such
an ideal state will ever be reached. However, there is an apparent or characteristic spacing evident in the
array, which corresponds to the primary peak in the power spectrum. Greenwood and co-workers plotted
Emean versus 1/t and extrapolated the data to infinite time, to estimte the average array spacing (\1).
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Figure 6.16:  (Left) Solid-liquid interface of a dendritic array at different times. Pulling speed of Vs =
150pum/s and thermal gradient is G = 1500K/mm. (Right) power spectrum of corresponding interfaces
at left. Units of length are all in the phase-field interface width W,.

They also noted that the main peak develops very rapidly, before approach to a steady state becomes
apparent in the array.

The work of Ref. [86] conducted simulations like the ones shown in Fig. (6.16) for several sets of phase-
field parameters (G, V', C,, k, A) [86]. Here, A is the coupling coefficient in Eq. (6.75), and C, is the alloy
composition. Their simulations found cellular structures emerge at small V', while at high V' dendritic
arrays emerge. The spacing (A1) attains a maximum for intermediate values of V', near where the thermal
length approaches the solute diffusion length, i.e. Ip ~ [p. The presence of such a maximum has been
been predicted theoretically [131] and observed in experiments [21, 139]. Figure (6.17) shows simulated
(A1) data collapsed onto a plot of dimensionless wavelength vs. a dimensionless velocity. On the same
plot are superimposed three experimental data sets from Ref.[139], in which directional solidification of
organic alloys of SCN and PVA were studied. The three experiments in Fig. (6.17) are for SCN-0.25mol %
Salol at 13K/mm, SCN-0.13mol %ACE at G=13K/mm and PVA-0.13mol % Ethanol at G=18.5K/mm.
The change in the two slopes corresponds to where V' in the raw data reaches a maximum.

Dantzig and co-workers extended phase field simulations to the study of microstructure selection in
directional solidification in three dimensions [109, 108, 12, 13]. Their simulations studied directional
solidification of an SCN-Salol alloy in the thermal gradient G = 4K/mm and with a thermal length
Il = 49 x 107*m. As in the two dimensional simulations of Ref. [86], the the 3D simulations were
started from an initially flat interface perturbed by uniformly random fluctuations. Figure (6.18) shows
the emergence of cellular arrays arising for pulling speeds and for different glass plate spacings ¢ (units of
interface width Wy). As the thickness of the channel, § becomes smaller, the scaling of the 3D dendrites
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Figure 6.17: Dendrite spacings from computations and experiments from Ref. [189] scaled to material
properties, producing a single scaling function for primary spacings Ay

approaches the narrow curve (or band) of the 2D dendrites, as expected. Specifically, after a sufficient
transient time, they analyzed their data using a Fourier technique as described in the 2D simulations.
For the smallest values of 4, they found that through a suitable re-scaling, the computed (A1) vs. V data
collapsed onto the curve shown in Fig. (6.17).

The simulations of Greenwood et. al and Dantzig and co-workers suggests that () can be described
by a crossover scaling function of the form

M) _ Iz, (lT _ ZT> (6.109)

Ae  Ip’ \ip 13

where A, is a characteristic wavelength at the transition from the planar-to-cellular instability and [}, =
2D/V, and V, is the pulling speed where a planar from becomes unstable to cellular solidification. The
characteristic wavelength A, has been evaluated numerically and found to be consistent with several
theoretical predictions in the literature. Figure (6.19) compares A. for the 2D data of Fig. (6.17) to
Atheory = \/ Amslrr(Vy = Vi), where A, s denotes the Mullins-Sekerka wavelength at the planar-to-cellular
onset boundary (i.e., where V' =V,), and lrg(V},) is a velocity-dependent generalization of 7, implicitly
determined from I = Ip(1 — exp(%)). Physically, lrr(V,) is proportional to the amplitude of
cellular fingers and satisfies Ipgp ~ Ip(1 — I},/2lr) at the onset of cellular growth, while in the limit
(Vo > V), lrp — lp. This form of Agpeory is similar to am analytical prediction of A, from a geometrical

model [131]. Figure (6.19) also compares ¢ t0 Atheory = (dolDlT)%, which represents the geometric mean
of the three length scales, empirically suggested to be proportional to the wavelength at the planar-to-
cellular onset [195]. Figure (6.19) suggests that for both cases Ae = aAiheory(1l + Bdo/Atheory), Where a
and (§ are material independent constants.

Boettinger and Warren also examined directional solidification in an isomorphous alloy [27] using a
phase field model they previously developed [204, 26], which employed a frozen, linear thermal field and
a free energy of the form discussed in section (6.3.3). Using parameters approximately corresponding
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Figure 6.18: Directional solidification of an SCN-Salol alloy in 8D. As the spacing between the glass plates
becomes smaller then the tip radius the simulations effectively becomes two dimensional. Adapted from

Ref. [13]

to Ni-Cu they also found evidence of a monotonic relationship between a band of dendrite spacing Ay
and pulling velocity. It is not clear if their simulations can be quantitatively compared to the ones of
Greenwood et. al and Dantzig et. al. The former investigators used quite a small simulation domain,
making their results amenable to strong finite size effects. Also they also did not apply asymptotic
analysis discussed in this chapter to their phase field model in order to emulate the interface equilibrium
conditions specified in section (6.2.2; indeed the work of Boettinger et. al is aimed at investigating the
role of solute trapping on the interface stability. Interestingly, the work of Boettinger et. al also shows
that the different realizations of uniformly random perturbations of an initially flat initial interface gives
rise to spread in the final A\; for a given V. This is consistent with some statistical selection mechanism.
It is plausible that the larger systems used by Greenwood et. al minimized the spread in A1 or at least
confine it to a scaling band, consistent with Fi.g (6.17). Further work is required to answer this question
but it appears that at least some combination of statistical selection and scaling may be at work in
selecting the characteristic length of primary branches.

The combination of phase field modeling, analytical theories and experiments of directional solidifi-
cation raise some interesting questions. On the one hand, it appears that the primary spacing displays,
at least in the statistical sense, a scaling theory for a given class of initial conditions and the case of
constant pulling speeds and thermal gradients. On the other hand, it also appears that the precise steady
state of a dendritic array is not deterministic and may flow into an ensemble of states that depends on
initial and cooling conditions. Is there a way to reconcile these apparently contradictory conclusions?
The answer may lie in what is meant by ”dendrite spacing”. It is clear from experiments that dendritic
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spacing does fall into at least a range of reproducible values, for slowly varying cooling conditions. In
this case, the average spacing (A1) is characterized analogously to that in Fig. (6.16). It is therefore
plausible the precise values of A1, as influenced by finer oscillations of the tip [58], breathing modes, etc.,
can all comprise finer structure to a larger scale selection principle characterized by (A1), and which is
determinable by the fundamental length scales of the solidification problem. That would also explain why
the phenomenological power-law theories of Hunt, Kurz, Kirkaldy and others are robust enough have the
same trend as experiments. From the perspective of materials engineering, a coarse approximation such
as that given by geometric models or scaling theories like that of Greenwood et. al are probably more
than adequate. However, from the perspective of understanding the fundamental physics during pat-
tern formation in solidification more research is required to elucidate the non-Inear dynamics controlling
dendrite array selection.

6.10.4 Role of Surface Tension Anisotropy

It was previously discussed that an isolated crystal requires anisotropy in surface tension or interface
kinetics in order to select dendritic growth directions. In the absence of any anisotropy, a solidifying
crystal will meander, forming a ”seaweed” like patterns formed through successive tip splitting of the
primary branches as they grow. Seaweed are also possible in directional solidification [7, 197, 102] where
they can emerge when the temperature gradient is mis-oriented with respect to preferred growth direction
corresponding to the minimum in surface tension. The resulting competition between the driving force
provided by the thermal gradient and the lower free energy along the axis of surface tension anisotropy
can cause the dendrite growth tip to undergo a succession of tip splittings (a key feature of seaweed
evolution) as it attempts to follow two growth directions. Figgure (6.20) shows a 2D phase field simulation
of seaweed. In the figure the anisotropy of the surface tension is oriented at 45 degrees from the x axis,
while the direction of heat extraction in along the negative y axis.

Reference [174] used phase field modeling to examine the morphological transition in two dimensional
directional solidification. it was found that a mis-orientation between the direction of a thermal gradient,
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Figure 6.20: Phase field simulation of a typical seaweed structure emerging when two sources of anisotropy
compete.

G, and the direction of minimum surface tension leads to a transition in dendrite microstructures [174].
Figure (6.21) shows a phase field simulation of a dendritic array where the surface tension is minimal
at directions 45° from the z-axis (horixontal) and where the thermal gradient is one dimensional along
the z-axis. The thermal gradient in this simulation is set low enough that the surface tension anisotropy
controls the minimization of free energy. This results in dendritic crystal array oriented in the direction of
the surface tension anisotropy (45° with respect to the z-axis). In Fig. (6.22), the thermal gradient (i.e.,
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Figure 6.21: Directional solidification with the surface tension anisotropy oriented at 45° with respect to
the z-azis. G = 0.8k/mm and V,, = 32um/s. Below a critical thermal gradient (oriented along the z-axis)
the surface tension anisotropy controls the growth and dendritic structures emerge, oriented very closely
the 45° axis. The insets show the velocity distribution in the x and z directions, respectively.

driving force along z-direction) is increased and a competition sets in between the preferential direction of
surface tension anisotropy and the cooling direction. The ensuing competition leads to the characteristic
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seaweed-like structures seen in the figure, structures characterized by a continuous succession of growth
and splitting of a rather bulbous primary and —to a lesser extent— secondary tips.
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Figure 6.22:  Directional solidification with the surface tension anisotropy oriented at 45° with respect
to the z-axis. Cooling parameters are the same is in Fig. 6.21. As the thermal gradient increases a
competition between growth in the forward direction and the direction of surface tension anisotropy leads
to multiple dendritic tip splittings, and a subsequent crystal structure that resembles seaweed. The insets
show the velocity distribution in the x and z directions, respectively

One way to characterize the morphological change from 2D dendrites to 2D seaweed is the distribution
of local interface velocities. This is shown in the insets of Figs. (6.21) and (6.22). It is typical for seaweed
structures to exhibit a sharp velocity distribution, while a broadening of the distribution is typical as
dendrites emerge. Another way to quantify the transition exemplified in Figs. (6.21) and (6.22) is by a
semi-analytical argument presented in [174]. For the parameters used to generate the data shown here,
this analysis predicts that for a given €4, a morphological change from seaweed to oriented dendrites will
occur when the cooling gradient G is below

G* ~ Py \/(Vpcosﬁ)/(Ddo [1 4+ 15e4c0540]) (6.110)

where Py =~ 0.004, V,, is the pulling speed, 6 is the angle of anisotropy, D is the diffusion constant, d,
is the capillary length and €4 is the anisotropy strength. This selection criterion defines a morphological
phase diagram in V,, — G space for a fixed e4. It predicts a crossover from seaweed to oriented dendrites as
a function of V. At sufficiently large V), it is expected the fastest growing unstable wavelength to occur
in the forward direction regardless of the angle of anisotropy. It is quite plausible that the phenomenon
described here is ubiquitous and presents itself in other forms when two or more anisotropies controlling
growth directions are present.

The transition between competing dendritic growth directions becomes significantly more complex in
three dimensions. For example, molecular dynamics has shown [95] that a correct characterization of
the surface energy of a 3D crystal requires the angles 8 and ® of the spherical coordinate system to be
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parameterized. Specifically, the stiffness v of a crystal is given by
Y0, ®) =, (1 + €1 K1(0, D) + e2 K2 (0, D)) (6.111)

where 7, is the isotropic surface tension and K; and Ky are cubic harmonics, which are simply combi-
nations of spherical harmonics [95]. The parameters €, s are the 3D analogues of €4 used in 2D. They
can be used to define preferential growth along multiple directions depending on their relative strength.
For example, in FCC metals e2 < 0 and €; > 0. A positive term K; favours growth in the (100), while
a negative Ky term favors growth in the (110) direction. The direction that is eventually selected will
clearly depend on the relative strength of these two terms. A recent phase field study Haximali and co-
workers [89] showed that competition between €; and ez will cause a transition between equiaxed (110)
oriented dendrites to seaweed and back to equiaxed (100) dendrites. Figure (6.23) shows an example
of the emergent dendrite morphologies of a pure material when ey is held fixed and € is varied [89].
Haximali and co-workers also considered the combined effect of €; and €3, predicting a phase diagram
containing a region of (110) dendrites, a region of (110) dendrites and a region of seaweed structures.
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Figure 6.23: Figures (a)-(e) show the dendritic growth forms versus e, for ea = —0.02. The azimuthal
mis-orienatation between branches changes continuously ® = 0 to ® = 45°. The top right figure shows the
interface cross sections at equal time intervals along a (100) plane of sub-image (b). Projected contours

show the mis-orientation between growth directions, quantified by the azimuthal angle ®. Reproduced from
Ref. [89].

The study of Haximali and co-workers also considered the role of the the anisotropy parameters €;
and eg in binary alloys. Interestingly, they conjectured that increasing the nominal alloy composition
in a binary alloy (e.g. wt%Zn in Al) will result in a simultaneous change in both the anisotropies,.
This hypothesis was found to be consistent with molecular dynamics work of Hoyt and co-workders [95].
The implication of their finding is that changing the impurity content of an alloy will led to different
dendritic morphologes. Specifically they estimated that the change in anisotropy parameters would make
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the corresponding dendritic morphology transition from a (100) equiaxed structure to seaweed. Evidence
of this transition was found in experiments in directionally solidified of Al-Zn alloys.
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Chapter 7

Multiple Phase Fields and Order
Parameters

IIn recent years, the basic principles of phase field theory have been used to develop an large number
of so-called multi-phase or multi-order parameter phase field models, which have been applied to the
study of poly-crystal, multi-phase or multi-component phenomena in phase transformations. Generally
speaking these models fall in three classes. Models incorporating multiple order parameters goes back to
the work of Khachaturyan and co-workers [48, 49]. The introduction of orientational order parameters
to examine poly-crystalline solidification goes back to the work of Kobayashi and Warren [127, 128]. The
introduction of multiple, phase fields, which are interpreted as volume fractions, has been championed
by Steinback and co-workers [192, 104, 28]. Since the inception of these models many other works that
have used or expanded on the ideas developed in the above references. The reader is referred to the
following small, but by no means exhaustive, list of such works: [3, 201, 202, 205, 191, 75, 126, 159,
116, 42, 160, 184, 81, 84, 83, 88, 221, 211, 121, 76, 17, 155, 118, 125]. The majority of multi-order
parameter or multi-phase field models have found applications in solid state grain growth and coarsening
and more recently in multi-phase precipitation. Some models also incorporate elastic effects in order to
study the role of strain in phase transformations. Others, particularly ones that employ an orientational
order parameter, have been used predominately to examine dendritic solidification and the subsequent
formation of polycrystalline network.

As with single phase field theories, multi-order and multi-phase field models are typically constructed
so as to respect the thermodynamic symmetries of bulk phases and to consistently reproduce the correct
sharp interface kinetics in the limit when phase field interfaces become mathematically sharp. These
models are not immune from the diffuse-interface problems discussed previously. A thin interface limit
analogous to that discussed in conjunction with single order parameter theories is generally lacking for
such models [75, 56]. This does not pose a big problem in solid state problems where the disparity
in diffusion coefficients is small and the kinetics is largely curvature or diffusion controlled. It can
be a problem, however, when using multiple phase fields to simulate the entire solidification path of
multiple phases or crystals. The same general comments can be made about orientational order parameter
models —or multi-order parameter models in general. There are several notable exception to these general
observations. One is is the multi-phase field work of Folch and Plapp [74]. They have used three
volume fraction fields to simulate eutectic solidification in binary alloys using diffuse interfaces. They
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employ a free energy functional that reduces along any two-phase boundaries into the thin-interface
model of Echebarria and co-workers [57]. More recently, Kim [120, 118] also extended the use of the
anti-trapping formalism discussed in the last chapter to a single phase solidification model with multiple
concentration fields. This technique was recently used by Steinbach [189] to associate an antri-trapping
for each concentration field of a multi-phase field model.

Delving into the technical details of multi-phase field and multi order parameter models is beyond the
scope of an introductory text. In order, therefore, to keep the length of this book manageable, this chapter
will only introduce the basic aspects of such models. The reader is directed to the various works cited in
this section —and references therein— for a more complete analysis on this subject and it applications.

7.1 Multi-Order Parameter Models

The original concept of a multiple solid order parameters was already discussed in section (5.1), where
a separate order parameter was associated with each reciprocal lattice vector of a crystal. In that
context, each order parameter was complex and could be used to reconstruct atomic-scale structure in a
crystal, as will be discussed in later chapters. In a slightly different context, Khachaturyan and co-workers
introduced multiple real order parameters, ¢;, to distinguish between different different ordered structures
(e.g. as occurs in solid state transformations). In this case, a phenomenological free energy functional is
constructed to respect the appropriate symmetries in each order parameter and, in the case of alloy, the
appropriate thermodynamics in each phase. Dynamics for each ¢; follow the usual minimization principle
examined in the context of single order parameter theories. Dynamics of compositions and temperature
follow the standard conservation laws.

7.1.1 Pure materials

The simplest multi-order free energy that can represents transformations that involve the reduction of
symmetry between a parent phase and different ordered daughter phases has the form [50, 47, 116]

N 62 —
F[{¢i}] :/dV[Z ;iV¢i|2+f(¢17¢27¢37"';¢N):| (7.1)

where the fields {¢;} = ¢1, 02,03, -+, dn describe each order phase f(¢1,¢2,¢3, .. -,ng) = f({o:i})
denotes the local or "bulk” part of the free energy. A simple form of f({¢;}) that is the analogue of the

”double-well” potential is given by

F(on) =30 (- 5ot + Fot) +ow X 623 (72

i=1 j#i

The first term in Eq. (7.1) gives rise to gradient energy and therefore grain boundary energy of a phase,
proportional to the coefficient €4,. The second term represents a multi-well potential having 2/N minima,
making it possible to theoretically consider a large number of crystals for single phase systems (or several
phases). In this case where A = B = 1, the multi-well is has minima at ¢; = £1 and ¢; = 0 Vj # 1.
Other forms of the free energy can be constructed that give minima at ¢; = 0,1. The constants A
and B can also depend on temperature, as do in that case the minima of the multi-well potential. The
last term containing ayps called obstacle potential. This is an interaction energy that penalizes fields for
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Figure 7.1: Multi-Phase field free energy functional, neglecting gradient term and with cops = 1.

overlapping, in proportion to the barrier aps. This free energy functional, for the case of N = 2 and
neglecting the gradient term is plotted in Figure (7.1). The free energy in Eq. (7.1) has been used to
study simple properties of grain growth and coarsening.

By extending the free energy to a sixth order polynomial it is possible to generate a free energy land-
scape that allows transitions to meta-stable states. Khachaturyan and co-workeres [203] also introduced
a sixth order free energy of the form

3

Ao, B,y Clio, o, o) s 00
f(1,02,03) = Z <— 5@ + 4¢i> + 6<¢1 + ¢3 +¢3> +aobszz¢i¢j (7.3)

i=1 i=1 j##i

to study the transition from a cubic phase to a meta-stable martensitic phasse. In this case a cubic dis-
ordered phase gives rise to one of three variants daughter phases with tetragonal symmetry, where each
cubic phase can take on two orientations. A very important realization of this transformation occurs
when austenite is converted to martensite steel. This transformation is induced by rapidly quenching
austenitic steel (cubic symmetry), which leads to a metastable martensite phase having tetragonal sym-
metry. Martensite is a very hard brittle phase, while austenite is more soft and ductile. Forming a certain
fraction of martensite in austenite is a common way to harden steels.

Dynamics of multiple order parameters proceeds analogously to the case of single order parameters
theories. Each ¢; evolves according to dissipative dynamics that dynamically minimize F[{¢;}] according
to

9¢i 5F
ot -y, 50, +ni(,t)
= -Ty, Wéﬁ;,@) — e V20| +ni(T,1), (7.4)
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The noise term 7); can in principle be different for each order parameter, although is typically drawn from
a Gaussian distribution with zero mean and variance consistent with the fluctuation dissipation theorem
[44].

7.1.2 Alloys

Structural transformations typically occur in alloys, which involve the precipitation one or more ordered
phase from a disordered phase and mass transport. An interesting metallurgical example is the v/ — ~
transition in AN-Al alloys, there the 7' phase can assume one of four crystal symmetries (i.e. i = 1,2, 3,4)
[221]. To include impurity effects, the coefficients in the free energy density of the previous sub-section
must be made to depend on the concentration ¢, which is the weight or mole percent of impurities in the
solvent element of the alloy.

Wheeler et al [209] and later Fan and Chen [72] extended multi-order parameter approach to study
grain growth in two-phase solids of a binary alloy. These were then extended by Fan et al. [73] to
study Ostwald ripening in a poly-phase field model of a binary alloy. The basic form the the free energy
functional has the form

N

Fl{¢i},c] = /dv[zez’i

i=1

— 2 —
Vorl? + 5 Vel + 1 ({91}.0) | (7.5)

For a general bulk free energy f({¢;}, c), this model will be plagued by similar mathematical difficulties
as its 1D analogue studied in section (6.4). Finding the equilibrium order parameters, ¢;?, requires
multi-variable minimization in this case, which can be quite complex. Moreover, the ¢;? are concen-
tration dependent. Furthermore, the surface energy will depend on the properties of the steady state
concentration and order parameter profiles. While straightforward to calculate, these properties become
very tedious for multi-order parameter models. In addition, there will also be an upper bound on the
gradient energy coefficient(s) that can be used while self-consistently representing a particular surface
energy.

To overcome these problems Chen and co-workers [222, 223] have extended the method of Kim and
co-workers studied in section (6.9) to multiple order parameters !. For the case of chemically identical
precipitates of N different crystal symmetries, two fictitious concentration fields are defined, one for a
precipitate phase, Cp, and another for the matrix phase, C,. The physical concentration, c is then
interpolated by

¢ =Cpp({i}) + Cm (1 —p({$:})) - (7.6)

where
N
P({Qf%}) = ZP(¢i) (7-7)

and h(¢;) is any convenient interpolation function that restricts each order parameter between (0 < ¢; <
1). A simple form used in Ref. [221] is

N
P({¢:}) = Z ¢3 (697 — 15¢; + 10) (7.8)

1This approach was also developed at the same period of time in the context of multi-phase field models by Taiden et.
al [104].

128



In addition to Eq. (7.6), the fictitious concentrations C,, and C), are restricted to satisfy a constant
chemical potential at all points by imposing the condition

fo(C) _ OfnlCu)
dc Jdc

(7.9)

where f, and f,, are the free energies of the precipitate and matrix phases, respectively. Together,
Egs. (7.6) and (7.9) imply that for any combination of {¢;} and c in the system, there is a unique C), field
and C, field. Physically this implies that any diffuse interface is a mixture of matrix and precipitate
phases with a constant chemical potential. Equations. (7.6) and (7.9) can be self-conssitently solved
numerically using the method of Eq. (6.107) where h(¢) — p{¢:}).

In terms of C,, and C,, the free energy density f({¢;},c) is then written as [120, 222, 223],

FUdit0) =p({6i}) fp(Cp. T) + (1 = p({#:})) fin(Cons T) + H fro ({04}) (7.10)

where H is the height of the double well, i.e. nucleation barrier and fp(¢;)) is a multi-well potential
given by

N N N
fo({#i}) = Z 07 (1= ¢:1)* + obs ZZ 0797} (7.11)
i=1 =1 j#i

It is noted that f, and f,, can be directly chosen from thermodynamic databases, leading to a quantitative

evaluation of driving forces. The first term in Eq. (7.11) sets the nucleation barrier for each variant and

the "obstacle” term «,ps models an interaction penalty for the overlap of any two or more interfaces.
The evolution equations for ¢;, once again, follow

0¢; OF .

= Ty — ;
ot ®i 5o +771(x’t)
a BRI
= Ty, 0f({#:}.¢) — e, V20| +mi(@,1), (7.12)
09¢; ‘
while the impurity concentration evolves according to mass conservation,
Jdc = S 0F
e | Te(o, bl
5 = 9 [reov]

= V- D{e1}) ¢ 3f({¢¢}7c)_€2 2.
- [%f({@},c)v( dc eV )] (7.13)

where D({(j)l}) is the phase dependent diffusion coefficient. A typical choice often used in the literature is
D({gbl}) = Dpp({qbi}) +D,, (1 - p({qﬁz})) This choice is phenomenological through the interface region
because of the arbitrariness of the choice of p({gf)z}) It is possible, however, to replace this function by a
new one, say H ({gbl}), with the same bulk phase limits and different interface properties that match some
desired measurements. The partial derivatives on the right hand sides of Eqs. (7.12) and (7.13) can be
cast in terms of C, and C), using Eqgs. (6.93)-(6.95), where ¢ — ¢;, h(¢) — p{¢;}) and h'(¢) — P'(¢;).

The multi-order parameter formulation discussed here can be analyzed similarly to the model of
section (6.9) to obtain the equilibrium properties of the model. Specifically, because of the method
chosen to interpolate concentration, the chemical potential becomes constant through the interface, thus
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removing any explicit dependence of concentration from the surface energy calculation. The resulting
phase field steady state equation (i..e Euler-Lagrange equation) for ¢; describing the transition across
an equilibrium matrix-precipitate boundary becomes the familiar form leading to a hyperbolic tangent
solution. The resulting expression for surface tension and interface width are determined as in Ref. [120],

€¢\/ﬁ
3V2
Ve,

W= i (7.14)

Where the specific factor of v/2 depends on the definition used to define the interface width (i.e. where
the ¢ is sufficiently close to 0 or 1). For overlapping interfaces, these constants have a more complex
dependence on the order parameters. As discussed earlier, the diffuse or thin interface limit of this and
most multi-order parameter formulations is presently lacking. This is likely not to be a problem for many
solid state transformations, where the difference in diffusion coefficients can be small (in some cases)
and which are curvature or diffusion controlled. Of course, care must always be taken how diffuse the
interface in made so that particle overlap is not induced artificially. Furthermore, in the in the limit of
rapid interface kinetics, the diffuse interface is expected to generate spurious terms of the form discussed
in the connection with solidification modeling in previous sections (e.g. AF, AH and AJ) will become
significant.

7.1.3 Strain effects on precipitation

A common application of multi-phase field models is the study of second phase particle precipitation
from a solid matrix. This phase transformation is usually strongly influenced by the effect of elastic
strains that are generated by the mis-fitting of atoms of different crystal structures across their common
boundary. For instance in the 4 — ~ transition discussed above the tetragonal and cubic phases can
generate a lattice mis-match of order 1072, To include this and related elastic effects an additional fre
eenrgy contribution, fe(¢) is added to Eq. (7.10). This leads to a elastic component to the free energy
functional,

ralo.d =5 [ [ (6= 0.0 )utton) (e - ¢ tton.a ) |av - a9

where subscripts denote tensor components and repeated indices imply summation 2. The tensor Cijki
is the elastic modulus tensor, which generally depends on phase via the order parameters ¢;, as well as
possibly on concentration c. The tensor ¢;; is the local heterogeneous strain, defined by

1 8ul 6u]‘
“i= 5 (axj + 6:@-) (7.16)

where w; is the i*" component of the displacement i and z; is the i* cartesian coordinate (i = 1,2,3)..
The tensor €f; is a so-called eigenstrain or stress-free strain. This is a strain the material assumes in
order to relieve itself of internal stresses. It serves as a reference state or strain. It generally depends
on the local composition, order (i.e. phase) and temperature. Eigenstrain is illustrated intuitively by

considering the free expansion of a bar heated through a a temperature difference AT. The strain on

2Tt is assumed here that there is no macroscopic change in volume of the materials during the phase transformation.
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the bar is €© = AL/L, = aAT, where L, is the original length of the bar. Any strain additional strain
—internal or external- applied to the bar must be referenced with respect to €° 3.

An important source of stress-free strain in alloys arise because the difference in size of a solute atom
from its host locally distorts the host lattice. The form of stress-free strains from this mechanism is
known as Vagard’s law [70], and takes the form

€. =e % = 1@

] ij ade ij (7.17)

where a is the lattice parameter of a given phase Analogously, crystal structures of different lattice
constants that meet at an interface locally distort (near the interface) in order to accommodate as much
bonding, or partial binding, as they can. The local distortion on either side of the interface causes a
elastic distortion throughout the two phases. The stress-free strain associated with misfitting latices is

modeled by a an additional contribution to €f; of the form

N
€= ent = ehor (7.18)
n=1

where NN is the number of crystal phases or variants that minimize the bulk free energy below the transition
temperature. Here, the coupling of each term to ¢, makes each term in the sum ”activate” only in the
ordered precipitate phase. Thus, misfit is measured relative to the cubic matrix phase. For each variant
phase the eignenstrain is a diagonal tensor. For instance, in the cubic to tetragonal transformation
example discussed above, €, = €;0;j, where the components of the misfit strain are: e% = (e3,€1,€1),
€2 = (e1,€3,€1) and 630? = (e1,€1,€3), where €1 = (a1 — ag)/(aggbgq) and €3 = (asz — a2)/(a2¢gq), where
a1, az,as are the lattice parameters of the cubic unit cell. Since the lattice constant depends on local
composition, the misfit strains can also, strictly, have a concentration dependence [185].

Incorporating the change of order parameters of the strain energy requires an additional d fq ({@}) /0,
term in the large square bracket on the right hand side of the phase field equation (7.12). Moreover,
strain relaxation is simulated alongside the dynamical phase field equations, Eq. (7.12) and (7.13) by

solving the continuum equations of mechanical equilibrium. This is modeled by

TN NUANENEAY -
8xj 8a:j 567;]‘ 8.73]‘ 36@‘

where o;; is the stress tensor. The explicit forms of 0fe/0¢; and 0 fe/0e;; are worked out explicitly for
the v — +/ transformation in [216] (see Egs.(26) and (28), respectively). Use of the static -equilibrium
equations implicitly assumes that strains are relaxed on much shorter time sales than any other process as-
sociated with the phase transformation in question. This assumption becomes invalid for transformations
that are occur on phonon time scales.

Figure (7.2) shows evolution of « precipitates in a Ni-Al alloy. This simulation was done by Zhu and
co-workers [221] using a multi-phase field model with elastic misfit strain similar to the one described
in this section. The initial precipitates are typically seeded by a nucleating many random precipitate
seeds, whose distribution is motivated by experiments [186]. As coarsening proceeds, precipitates take on
a conspicuous cuboidal form. The first frame in the image shows the precipitate particles immediately

3Note that if there is a homogeneous strain e?j
h

i

in the material, the eigenstrain must then be subtracted from this, i.e.

o o _
Eij ﬁeij €
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Figure 7.2: Multi-phase field simulation of the evolution of ' precipitates in a Ni-13.8at%Al alloy.
Reprinted from Ref. [221].

following nucleation of initial seed particles. Subsequent frames show the coarsening process, wherein
particle merger reduces the number of particle. The typical particle size was mathematically characterized
by L3(t) = L3+ K(t —t,), where L is the average liner dimension of the particles while L, is the particles
size at the onset of coarsening, which corresponds to the time t.. Figure (7.3) compares this theoretical
form to experiments.

7.1.4 Anisotropy

As with single order parameter theories, anisotropy of surface energy is modeled through the angular
dependence on the gradient energy and the mobility coefficients. For instance, Kazaryan and co-workers
[115, 116] modulate the he angular dependence of surface energy anisotropy of each grain via the gradient
energy coefficient €4, and the mobility I'y,. Specifically, they set €, = E2A(0,1)? and T'y, = T, A(6,v)
where

A(0,v) = (] cos | + |sinv|) 0 [1 —1In Hi} (7.20)

m

and # and 1 are the two angles required to measure a tilt boundary mis-orientaiton, and E, and T,
are isotropic reference values of surface energy and mobility, respectively. it is found that anisotropic
mobility leads to a modification of the usual Allen-Chan relationship [39] which related growth of grain
boundary area in a polycryatlline sample according to

A(t) — At =0) = —kMt, (7.21)
where k is a constant and M is related to the interface mobility, corrected for my anisotropy [115].
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Figure 7.3: Comparison of simulated particles sizes in Fig. (7.2) to corresponding experiments. Also
shown are fits to the data. Reprinted from Ref. [221].

Another source of inherent anisotropy occurs in particles precipitation when strain relaxation is consid-
ered. In this case the source of the anisotropy is the different growth rates along different crystallographic
directions caused by misfit strains. Yeon and co-workers examined how this anisotropy is enhanced or
reduced as a function of particle density [216] using a single phase field variant of the model discussed
here. At low density they found free dendrites tips growing along the (11) directions. The morphology
of these solid state dendrites resembles in every way the dendrites discussed earlier in the context of
solidification. Figure (7.4) shows a comparison of a phase field simulation with experiments. The work
of Yeon and co-workers showed that the interaction of overlapping diffusion fields during precipitation
can stunt or entirely retard the anisotropic dendritic morphology shown in Fig. (7.4). Similar dendritic
morphologies are expected when the elastic coeflicients of precipitate particles are anisotropic [152].

When the anisotropies of surface energy and elastic coefficients are mis-aligned, it is expected that the
competing dendritic orientations will lead to interesting morphologies, such as the seaweed-like structures
discussed in the context of solidification in section (6.10.4). Greenwood and co-workers recently examined
the precipitation of elastically anisotropic particles in an isotropic matrix using a singe phase field model
with elastic strain effects [87]. Their modeled followed the approach of Karma and co-workers, which
judiciously selects the model’s interpolation functions in order to make surface energy free of concentration
in order to cope with diffuse interfaces. The precipitates in the study of Greenwood et. al have a 4-fold
anisotropy in both their surface energy and their elastic coefficients. Surface energy anisotropy is given
by Eq. (5.25). Cubic elastic coefficients are considered in each phase, for which the surviving elements of
the elastic tensor are Cy1, C12, Cyq. Anisotropy is introduced into cubic elastic coefficients by introducing
a small parameter 5 = Cyy — (C11 — C12)/2, which characterizes the deviation of Cy4 from its isotropic
value. Their study showed that as 8 and ¢4 were varied a morphological transition from surface energy
dominated dendrites [152] to dendrites that grow along the elastic anisotropy directions (the latter are
also reported in Ref. [190]). Figure (7.5) illustrates this phenomenon. The red line is indicates the (3, €4)
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Figure 7.4: Comparison between experimental solid state dendrite (top left) and simulated sold state
dendrite (main). Reprinted from Ref. [216].

phase space where morphologies are isotropic and resembles many features of seaweed.

7.2 Multi-Phase Field Models

Multi-phase field models differ from the methods above in that they treat the phase field as a volume
fraction. This imposes a constraint that must self-consistently be incorporated into the dynamics. As with
the very similar looking multi-order parameter method, the concentration is partitioned into individual
components that are mathematically tied to each phase. As a result, two phase interfaces can maintain a
simple expression for the surface energy even for very diffuse interfaces 4. Like their ” cousin” multi-order
parameter phase field models, no thin interface mapping has been calculated presently for most of these
models. As a result, they may lack accuracy in problems involving moderate to rapid solidification rates
from a melt. However in the description of precipitation and related transformations whose kinetics
can be assumed to be limited by diffusion and curvature, these models are quite accurate. Indeed, at
present, there even exists a successful commercial software ® used by some industries to predict features
of microstructures in metal alloys.

7.2.1 Thermodynamics

Anther and one of the earliest class of multi-phase field models assign the concept of a volume fraction
to N phases, each of which is represented by a volume fraction field ¢,, where « indexes a phase in the

4These are still very small mall compared to the scale of a typical microstructure and diffusion length of impurities
SMICRESS, Part of the software ACCESS, Aachen.
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Figure 7.5: Morphological phase space of dendritic precipitate growth. For parameters above the red line,
dendrite tip growth proceeds along the surface energy dominate directions. Below the line, precipitates
grow branches in the directions governed by the anisotropy of the elastic constants. Along the line,
isotropic structures similar to seaweed emerge. Reprinted from Ref. [87].

system. As such, the following fundamental constraint must be applied to the N volume fractions

N
> o =1 (7.22)
=1

As with the formulation of Kim and co-workers the idea is that a two-phase interface is made up of a
combination of the two phases. Moreover, this formalism also decomposes the concentration into a linear
combination of separate concentrations C, corresponding to the phase «, i.e.

N
c= h({¢a})Ca (7.23)

The function h({¢s}) is an interpolation function that is one when ¢, = 1 for some « and ¢3 = 0 when
« # . Once again the constraint of equal chemical is applied between any two phases, i.e.

8foz(Ca) _ afB(Cﬂ)
Oc Oc
for any two « — /3 pairs of phases. Equations (7.23) and (7.24) define N equations in N unknowns, the

solution of which determines the C, from any combination of volume fractions {¢,} and concentration
field c.

(7.24)
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The free energy of the multi-volume fraction formalism is given by

N

F[{¢a}7c] :/V |: Z <k;ﬂ|¢av¢5 - ¢ﬁv¢a|2) +g({¢a}) +f({¢a}7{ca}) av, (7'25)

a,B, a<p

where the gradient term now takes a more general form that makes it possible to manipulate the surface
energy of each o — 3 interface separately. The bulk free energy in this formalism interpolated between
phases by

N
f({¢a}7 {Ca}) = Z h(¢a)fa(0aaT) (7'26)
a=1

where f,(Cq,T)) is the corresponding free energy of phase o. The function g({¢,}) is takes on various
forms depending on the multi-volume fraction method. The simplest is a multi-well type of the form

N

9{da}) = D wapdid} (7.27)
B, a<p

Other forms of the obstacle potential have also been proposed for g({¢q}) [17, 28]. Their use here is
related to the possible emergence of third phases in two-phase interfaces. In addition, Nestler and co-
workers have also developed the formalism to incorporate non-isothermal solidification [75, 76, 17]. These
developments are left to the reader and will not be discussed further here.

As with the multi-order parameter method discussed in the previous section, the application of
Egs. (7.23) and (7.24) removes any explicit contribution from the impurity concentration from the result-
ing steady state free energy 6. As a result, the excess energy of any o — (3 interface is uniquely described
only by the constants k,g and w,g. In particular, the surface energy 0,3 and associated interface width
of each phase boundary W,z work out to [192, 59] be

o _ kagwag
af 3\/§
2k
Was = b (7.28)
Wap

Which are the same as Eqs. (7.14). As an example, of how Egs. (7.28) are derived, consider the simple
case of an o — § interface. In this case Eq. (7.22) requires that ¢, = 1 — ¢g. Considering this constraint
on volume fractions and ignoring the concentration terms, the steady state free energy becomes

ko

Fl(6ah008) = [ (U210 + wapa - 651 ) (7.29)

The solution of which is ¢g = [1 — tanh (z/v2Wy)] /2 and the solutions of which are given by Eq. (6.50)
with Wy = Was/v/2.

6What this means is that the variation of the steady state concentration fields through the interface are “slaved” to the
variation of the volume fraction (phase) fields and thus completely determined in terms of them.
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7.2.2 Dynamics

The dynamics of multi-volume fraction methods must preserve Eq. (7.22). This is done by replacing
Eq. (7.25) by Fiot = F + Feons, where Fops is given by

Feons[{¢a}.c] = /V)\ Lé ba — 1} dav, (7.30)

Here X is a Lagrange multiplier determined such as to impose the conservation of volume fraction.
Minimizing Feons with respect to A and substituting the expression back into Fins, and then applying
the usual variational minimization for each volume fraction field ¢, gives,

0bo Ty ~~(OF 6F -
B= X g, e (T3

Equation (7.31), combined with Eq. (7.13) for the evolution of concentration, completely specifies the
multi-volume fraction dynamics. As in section (7.1.2), variational derivatives with respect to ¢, require
partial derivatives of f({¢a},{Cs}), which in turn require knowledge of 9C,/0¢,. The procedure for
evaluating these partial derivatives is precisely analogous to that presented in sections (6.9) for single
phase solidification. Finally, a noise term has been appended to Eq. (7.31) to simulate interface fluc-
tuations, even though it is not clear how to connect volume fraction fluctuations and true atomic-scale
fluctuations. Further discussion of the properties of multi-phase field models, with applications to second
phase formation, is given in Ref [107].

7.3 Orientational Order Parameter for Polycrystalline modeling

Perhaps the most self-consistent way of describing multiple crystal orientations in traditional phase field
theory is via an orientational order parameter 8(Z), which can be loosely interpreted as a phase factor
implicit in the crystal order parameters ( eié'f"), which were defined in section (5.1). In this type of phase
field model, the orientational order parameter 6(Z) is coupled to one solid-liquid order parameter ¢. In the
case of solidification, ¢ controls defines transitions between solid and liquid and 6 defines orientational
changes between different grains. A free energy functional expressed in terms of these two fields, in
addition to the usual concentration and temperature, can be used to derive equations of motion for
solidification and interactions of grain boundaries. The 8 — ¢ formalism began with the work of Kobayashi
and co-workers [127, 205] as an alternative to the multi-phase field approach. A polycrystalline model for
solidification of a pure material was first examined, with preliminary two dimensional test results. A more
detailed work for solidification of a pure material and a full extension to two dimensional simulations,
which considered grain boundary energy, impingement, coarsening and grain boundary melting was later
presented [206]. This formalism was then extended to binary alloy solidification by Grandsy and co-
workers [81, 82, 84], who also considered nucleation and the subsequent growth processes in a binary
alloy.

7.3.1 Pure materials

The starting point for phase field for a pure polycrystalline material is a free energy expressed in terms
of 6, ¢ and T (temperature is often non written explicitly but is understood to enter the free energy
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parameters). Its basic form is developed by Kobyashi and co-workers [127, 128] and later studied more
extensively by Warren and co-workers [206]. It is given by

r-f dV[ V0O 1902 + £(6) + 50(0) V61 + Lr@)IvoP] (732)

where €4 is the usual gradient energy coefficient, which is dependent of the orientation of the interface
normal (determined by n = V¢/|V¢|) with a respect to an frame of reference in the crystal, which is
oriented at an angle 6 with respect to the laboratory frame of reference. The function f(¢) sets the
bulk free energy of the solid and liquid phases. The |V#| term is the simplest rotationally invariant 7
expression that describes the grain boundary energy due to orientational mismatch between grains. The
interpolation function p(¢) here assures that this term is only active in solid and zero in iquid. The
parameter S is treated as a constant that can be temperature dependent. Finally, the gradient squared
term is introduced in order to describe rotation of grains with h(6) an interpolation function that also
activates this term only in the solid.
Equation of motion for ¢ and 6 are given by

= F«ﬁ[eivw—fw)—@ (0)V0] - <¢>|€a], (7.33)
00 5 Vo
o = TS| <¢>|w|] (734

For simplicity, the above equations assume isotropic coefficients for the kinetic time constants 7 and
gradient energy coefficient 4. The phase field equation is straightforward to derive, as is the 6 equation,
save for the last term. For the rather involved mathematical details of deriving this term, the reader is
referred to Ref. [77, 126]. To the equations above can be added the energy equation to manage thermal
diffusion,

O _ \epy 199 (7.35)

ot cp Ot

which is precisely the same form as "model ¢” for solidification of a pure material. As mentioned above,
these phase field equations can describe solidification and subsequent grain boundary interactions.

To consider the static properties of this model, consider an isothermal, ”dry boundary” described by
the phenomenological function f(¢) = (a/2)(1—¢)?, which defines only one well, i.e. a single [solid] phase.
For the case ¢y = 0 and isothermal conditions, the surface energy is computed for the case p(¢) = ¢
from the steady state equations

2 d?¢
¢ 4a?

|
o

5 Ha(l—¢) = 56[0.0|

d 5,00\
x( 8z9|> = 0 (7.36)

These have been solved explicitly by Kobyashi and workers [128]. Their solution is 0,(x) = |Af8|§(z) and
do(x) = 1 — (1 — ¢s) exp(—|z|/v), where Af is the difference in orientations between adjacent grains,

"Meaning that the free energy functional does not change if there is a uniform rotation of 6.
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Figure 7.6: Sketch of the ¢, and 6, profiles in the limit when €y = 0. In this limit 8 is a delta function and
there is a sharp cusp (with a minimum ¢n,i,) in ¢,. In practice the phase field equations are simulated
with €y # 0 which makes these fields smoother. Re-printed from Ref. [206].

v=e¢p/aand ¢p; =1/(1+0,) where O, = SAH/(aey). The form of these solutions is shown in Fig. (7.6).
Substituting these profiles back into the free energy, and subtracting the reference solid energy, gives

SAB/a*

71t (S/ega) A0

(7.37)

where Af is the misorientation between crystals. To leading order in Af Eq. (7.37) gives o ~ Af which
is precisely what is expected by the Read and Shockly formula.

For a more general bulk free energy it is expected that the excess energy associated with the surface
energy of a poly-crystal grain boundary will contain contributions from the both change of orientation
and a from the change of order. The form of the grain boundary energy has been derived by Warren and
co-workers [206]. Procedurally, this is done by integrating the steady state form of Eqs.(7.33) and (7.34)
and substituting the result (¢, and 6,) into the free energy functional and subtracting the reference bulk
solid energy. This gives, in the ¢g = 0 limit,

o

0= S p(dmin) A0 + / (f(do(x) — f5) da (7.38)

— 00

where ¢, is the value of the steady state phase field ¢,(z) in the centre of the grain boundary (the
general forms of ¢, and 6, in this case are again analogous to that in Fig. (7.6)). It is a reference point,
which arises here from a constant of integration of the steady state phase field equation for ¢,. The
model can be dealt with analytically for the simple choices f(¢) = (a?/2)¢?(1 — ¢)? + fs P(¢) where
P(¢) = ¢3(10 — 15¢ + 6¢%, p(¢) = ¢* and fs = L(T/T,, — 1), where L and T,, are the latent heat
and melting temperature, respectively. For these choices, the solution of Eq. (7.33) gives a very simple
expression for ¢, at T' = T;,, when fs = 0. For the special case of ¢y = 0, this solution gives

A
Af.

Omin = 1 (7.39)
where A0, = aey/S.

An interesting feature of Eq. (7.39) is that it predicts the for A8 > A6, there is no steady state
solution to the phase field equation (i.e. ¢min becomes less than zero). Physically this implies that at the
melting temperature, the grain boundary will melt for a sufficiently high grain boundary misorientation.
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Figure 7.7: Plots of the surface energy, normalized with respect to the solid-liquid surface energy, versus
undercooling. Different curves correspond to different grain mis-orientation. Re-printed from Ref. [206].

This is also seen by considering the width of the grain boundary, which is given by (see Ref.[206] for
mathematical details),

o 2€¢ A(g

Equation (7.40) shows that the width of the grain boundary increases logarithmically as the critical
mis-orientation angle is approached. For general temperatures T < T,,, Eq. (7.38) can be plotted to
give the grain boundary energy as a function of undercooling AT = T — T,,. Figure (7.7) plots o vs.
AT for different values of mis-orientaiton Af. The different curves in the figure show that for a given
mis—orientation the grain boundary energy rises with undercooling. This is is a consequence of the fact
that as temperature drops below the melting point, the amorphous (i.e. metastable) material within the
grain boundary finds itself progressively more undercooled, which adds to the energy of the entire grain
boundary. Note that for mis-orientations greater than Af., the grain boundary energy becomes precisely
204, i.e. twice the solid-liquid surface energy. That implies that above a critical mis-orienttion all grain
boundaries melt into a small liquid pool at the melting temperature T' = T,,.

The actual grain boundary energy versus orientation requires that a grain boundary definition be
given. For a given mis-orientaiton, Warren and co-workers define the grain boundary, o1, as that value
of o corresponding to a specific grain boundary width Wy, < W* where W* is W* is determined by
experiments 8. Plotting o4, versus A gives the well-known Read-Shockely function. Other definitions
of what defines a grain boundary, (degree of order, etc) lead to the same Read-Shockely trend. It should
be noted that all the properties discussed here remain qualitatively the same when €y # 0, although the
algebra becomes more messy. The reader is advised to work through the algebra of Ref. [206] for further
practice with orientational dependent phase field models.

8This is likely a very difficult parameter to measure practically.
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Figure 7.8: Simulation of growth, impingement and coarsening of multiple seeded grains. Color represent

different orientations. The virtual sample is initially held at some fixed undercooling and then, after some
time, continuous heat extraction is applied. Re-printed from Ref. [206].

h |

As an illustration of the robustness of the § — ¢ model to handle solidification, grain impingement
and coarsening, Fig. (7.8) shows a simulation of multiple grains that grow dendritically and then merge
and start to coarsen. In this simulations ey # 0 and thus grain rotation is evident. The only other way
to simulate this effect is via the so-coined phase field crystal model discussed later in this book. Also, in
order to dendritic features of the grains, anisotropy has to be added to the gradient energy coeflicient,
as is the case in all model. In this simulation is was only added to the 6¢|V¢\2 term in the free energy
functional. It could (and should from the perspective of the asymptotic analysis of this model) be added
to 7 as well. The simulation of Fig. (7.8) also solved Eq. (7.35) to treat non-isothermal conditions.

As discussed at the beginning of this chapter the diffuse interface limit of the § — ¢ model —or any
other current multi-order parameter or multi-phase field model- is presently lacking. As such results such
as those of Fig. (7.8) are only qualitative in the solidification phase. The slower solid state dynamics
of this model are not as prone to artificially induced kinetics caused largely by rapidly moving diffuse
interfaces. As such, 6 — ¢ type models, as well as the other ”brand” of phase field models studied in this
chapter are a very robust way of elucidating the properties of grain boundary formation and coarsening
kinetics. It should be noted, however, that certain features of grain boundaries and elasticity cannot
be studied using these —or previous— types of phase field models since they do not contain atomic-scale
effects.

7.3.2 Alloys

The 6 — ¢ can also be extended to study polycrystalline solidification in alloys. The basic version of this
model was developed by Granasy and co-workers based on the original work of Kobyashi, Warren and
co-worker for a pure material. The basic alloy § — ¢ model presented here is presented in Ref. [88]. The
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starting point is this specific model is the free energy functional

2 2
F:/ dV[E;ﬁ¢2+%|§c|2+f(¢,c)+f0ri(</>,§9) , (7.41)
14

where €4 and €. are the usual gradient energy coefficient for the order change ad concentration. In this
particular model the solid is defined by ¢ = 0 and the liquid by ¢ = 1. The the bulk free energy density
f(@,c) is thus given by

f(¢,¢) = H(e)fp(¢) +p(0) fie, T) + (1 = p(9)) fs(c, T) (7.42)

where [ denotes liquid and s solid. The function p(¢) is an interpolation function that is zero in the solid
and one in the liquid. The orientational energy density fo.; used here is

Jori(6,V0) = S(1 - p(¢)) |V (7.43)

The function H(c) = (1 —c¢)Ha + cHp sets the energy scale proportional to the nucleation barrier height.
The function fp(¢) is an interpolation function that sets an energy barrier between solid and liquid.
Particularly useful choices of these functions are fp = ¢(1 — ¢)? and p(¢) = ¢>(6¢* — 15¢ + 10). The
parameter S is a constant chosen to reproduce the energy of low-angle boundaries. In 8 — ¢ models 8 is
defined only in the crystalline phase (¢ = 1), scaled between 0 and 1, while it chosen to fluctuates —or do
something innocuous— in the disordered phase. Anisotropy of the solid-liquid surface energy is added to
the model by letting €, — €4 (1 + € cos (mO — 2760)) where © = arctan (0,¢/0;¢). The angle © measures
the angle of the interface normal with respect to the laboratory frame. Thus, © — 6 measures the angle
of the interface normal relative to the orientation of the grain.

The dynamics of ¢ and ¢ in the above formulation follow from the usual variation principles. The of
the phase field evolves according to

0 -
o =T |2~ HOTfp(0) ~ (0)1.(eT) - e, T) 4 STI0] )| (7.44)
The concentration of impurities follows the usual mass conservation law
0 - -
8—? =V (M(¢, C)Vu) (7.45)
where v
M(¢,¢) = pre(l =) [Dsp() + Di(1 = p(9))] (7.46)
and 5F 9 9
p= = 9| (His = HAYTf(0) + p(6) 0 (e, T) + (1= p(6)) G (e, T) — V7% (7.47)

Care must be is taken in deriving the equation for the orientation order parameter and its treatment
during simulation, since it is prone to produce singular diffusivities. Kobayashi and Giga [126], have
outlined the proper steps to be taken in deriving such a variational and how it should be dealt with. The
evolution equation is then,

90 . Y
— =TySTV - [qu = }
ot () Vo)
This and the previous 6 — ¢ formulation for a pure material is mapped onto classical sharp interface
equations in the limit of vanishing interface width. In closing it is noted that the thin interface limit of

the alloy 8 — ¢ model presented is also currently lacking.

(7.48)
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Chapter 8

Phase Field Crystal Modeling of
Pure Materials

Previous chapters used a scalar field that is spatially uniform in equilibrium to model solidification. In
this description a liquid/solid surface is represented by a region in which the field rapidly changes from
one value to another. While the simplicity of this description is advantageous for computational and
analytic calculations there exist situations in which the approach is inadequate. For example crystal
symmetry can influence the shape and eventual anisotropic shape of the dendrite. While this detail can
be integrated into traditional models other aspects of crystal growth are more difficult to account for.
For example consider the common phenomenon of the nucleation (heterogeneous or homogeneous) of a
crystalline phase in a supercooled liquid as depicted in Fig. (8.1). Initially small crystallites of arbitrary
orientation nucleate and grow until impingement occurs and grain boundaries and triple junctions form.
Further growth is then dominated by motion of the grain boundaries and triple junctions. To model
this phenomena a model must incorporate the physics associated with liquid/solid surfaces, elasticity,
dislocations, anisotropy, grain boundaries and crystals of arbitrary orientation. While these features
are quite difficult to incorporate into standard phase field models of solidification, it turns out they are
naturally included in models that are minimized by fields that are spatially periodic in equilibrium. One
such model is the so-called phase field crystal methodology (PFC), which exploits this feature for modeling
crystal growth phenomena.

The PFC model essentially resolves systems on atomic length and diffusive time scales and as such lies
somewhere in between standard phase field modeling and atomic methods. The advantage of incorpo-
rating atomic length scales is that mechanisms associated with the creation, destruction and interaction
of dislocations in polycrystalline materials are automatically captured. It turns out that it is relatively
simple to model these features by introducing a free energy that, is a functional of a conserved field, is
minimized by periodic solutions and is rotationally invariant. In fact many such free energy functionals
have been proposed for various physical systems that form periodic structures. This chapter studies the
phase field crystal (PFC) model, which is just a conserved version of a model developed for Rayleigh-
Bénard convection, known as the Swift-Hohenberg equation [193]. Before outlining the details of this
model it is useful to first discuss general aspects of periodic systems and how such free energies can model
many features of crystalline systems.
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Figure 8.1: Atomic number density field of a partially solidified supercooled melt. The grey scale cor-
responds to the atomic number density field which is uniform (hexagonal) in liquid (solid) regions. Red
arrows indicate the orientation of three grains, the blue line highlights the liquid/solid interface, the pur-
ple lines show a single dislocation between two grains of similar (but different) orientation. The yellow
box encloses a grain boundary between two grains of with a large orientational mismatch.

8.1 Generic Properties of Periodic Systems

Periodic structures arise in many different physical systems, such as crystals, block co-polymer films,
charge density waves, magnetic films, superconducting vortex lattices and Rayleigh-Bénard convection.
In some cases these patterns can be characterized by free energy functionals, while in others the systems
are constantly driven far out of equilibrium and the patterns cannot be described by such functionals.
For the purposes of this chapter it will be assumed that such functionals exist. While the physical
mechanisms that give rise to these patterns are significantly different there are some generic (perhaps
obvious) features that are worth discussing. First in a periodic system there is a specific length scale (or
set of length scales) that characterizes the equilibrium or stationary states. For example a crystalline
state can be characterized by the principle reciprocal lattice vectors, while a block co-polymer system
might be characterized by a stripe width. For illustrative purposes consider a system characterized in
equilibrium by one length scale, a.,. The energy associated with a stretch or compression of the system
can be obtained by expanding F around a.g, i.e.,

oF 1 9%F 9
F(a) = F(aeq) + Da . (a_aeq)+§ a2 . (a—Geg)™ + - (8.1)
q q
=0

The second term is zero since F is a minimum when a = a4, thus to leading order in Aa,

k

(Aa)> Hooke's Law ! (8.2)

144



where AF = F — F(aeq), k = (0°F/0a?)|a,, and Aa = a — aeq. This result is identical to the potential
energy of a spring, i.e., Hooke’s Law. This illustrates the fact that elastic energy, as defined as the gain in
free energy upon deformation, is naturally incorporated by free energies that are minimized by periodic
functions.

The second important feature of periodic systems is the nature and interactions of the defects. In
general the type of defects are controlled by the nature of the fields (eg., real, complex, periodic, uniform)
that create the patterns. For example, in systems defined by uniform scalar fields (such as concentration or
magnetization) the defects are interfaces. In periodic systems such as block-copolymer films and crystals,
line or point defects typically emerge. For periodic systems the precise type of defects depends on the
symmetry of the periodic state, in essence geometry completely controls the topological defects that can
form. Thus a rotationally invariant free energy functional that produces an FCC pattern can naturally
give rise all possible defects associated with FCC crystal lattices. In addition, by construction, such a
model will have the anisotropies associated with the FCC lattice. The free energy must be rotationally
invariant since the free energy should not be a function of the orientation of the crystalline lattice. If such
a free energy can be constructed then it naturally allows for multiple crystal orientations since they all
have equivalent energy. Finally coexistence between, for example, uniform (i.e., liquid) and periodic (i.e.,
crystalline) phases, can occur if the periodically varying field is conserved, since a Maxwell equal area
construction (also called the “common tangent construction”) will be required to obtain the equilibrium
states. In the next section perhaps the simplest continuum model describing periodic structures will be
presented and analyzed before the PFC model is introduced and detailed.

8.2 A Classic Periodic System: The Swift-Hohenberg Model

The central topic of this section is on how to construct free energy functionals that are minimized by
periodic patterns. It turns out this is quite simple and can be illustrated by considering the usual ‘¢*’
free energy functional, with a slight modification to the spatial gradients, i.e.,

F= /dF (wngr Zw‘*) : (8:3)

Similar to Model A or B the free energy will have a single well if G > 0 and two wells if G < 0. Thus
periodic structures can be produced if G is negative when 1) is periodic and positive when 1 is uniform.
In other words GG is an operator constructed such that F is minimized by a periodic function, such as
Asin(gz). For simplicity consider expanding G in one dimension as follows,

2 d4 dG

+g4@+967+"'. (84)

d
G=g0+92 FG

dz?

where odd derivatives are not included as that would imply that the free energy depends on the direction
of the gradient. If ) = Asin(qz) then,

Gy = (90— 92+ d"9a— g6+ )b = Glq)¥, (8.5)
where G () = qo — ¢®92 + q*g1 — ¢°g6 + - - -. This implies that the free energy functional becomes,
2
F= /dF (G(q)w2 + ZW) . (8.6)
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Figure 8.2: Examples of function G(g). In figure (a) the Swift-Hohenberg G is plotted for e = 3/4 and
o = 1. In figure (b) the standard ‘Model A’ G is plotted as a function of ¢ for K = 1 and |r| = 3/4. The
interesting feature of this plot is that in the Swift-Hohenberg case G is a minimum at a finite q, while for
Model A, G is a minimum at q = 0, corresponding to a uniform (infinite wavelength) case.

Equation (8.6) shows that when G(g) is positive F has one well (at ¢ = 0) and when G(q) is negative
F has two wells. In the latter case the periodicity is largely determined by the value of ¢ that minimizes
G (corrections due to higher order fourier components can alter this periodicity). If G is most negative
at ¢ = 0 then the two phase states consists of spatially uniform phases as in standard phase field models
of solidification. In contrast when the minimum of G occurs at a finite value of q (say at gmin) then
typically F will be minimized by a periodic patterns with periodicity close to 2m/gmqn. For example, in
Model A (or B) G is equal to —r + K¢2, where r oc T — T}, In contrast, for the so-called Swift-Hohenberg
(SH) free energy functional [193] G(q) = —e + (¢2 — ¢*)? (or G = —¢ + (¢2 + V?)?)), where € is a control
parameter related to the Rayleigh number. Both these functions are plotted in Fig. (8.2) and illustrate
that G is a minimum at a finite value of ¢ for the SH model and zero for Model A.

Mathematically the simplest functional form for G(q) that produces a minima at a finite ¢ occurs when
go, g2 and g4 are finite and all other coefficients are zero. For instance in the SH equation gg = —e¢ + ¢2,
g2 = 2¢2 and g4 = 1. In this case the specific wavelength chosen is essentially a competition between go
and g4. Before considering the contribution of the non-linear term it is interesting to illustrate the go

part of the free energy functional by integrating by parts, i.e.,
/ dz ( ) ) . (8.7)

g2 ? g d (dy\ g2 d*y
Q/dx¢dx2¢—2/dx¢dx<dm)—z< V|,

In many cases the surface term is zero (as in periodic systems, or zero flux boundary conditions) so that

2 dy\?
%/dm¢ﬁ¢:g§/dz‘ (- (;ﬁ)) 92 /d ~[9u?) (8.8)
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Notice that is precisely the term that appears in Model A (or B), except that the sign is negative. This
highlight the obvious fact that in periodic system, some spatial gradients are energetically favorable. This
term alone would be insufficient as it implies the lowest energy state contains infinite gradients. The g,
term is included to suppress very large gradients.

The Swift-Hohenberg model introduced above [193] equation was derived for the phenomena of
Rayleigh-Bénard convection in which a fluid (or gas) is trapped between a hot and cold plate. If the dif-
ference in temperature between the two plates is large enough (or more precisely if the Rayleigh number
is large enough) a convective instability occurs in which convective roles form to transport the hot fluid
to the cold plate and cold fluid to the hot plate. The SH model can be considered as the ‘Model A’ of
periodic systems and is written,

}':/dF B¢ (me+ (@ + V) v+ |, (8.9)

where the field ¢ is a two dimensional scalar field that is commensurate with the convective rolls that
form at high Rayleigh number. The dimensionless parameter, €, is proportional to deviations of the
Rayleigh number from the critical value at which the convective instability occurs. The dynamics of the
field ¢ are assumed to be dissipative and driven to minimize the free energy functional in the usual way,
ie.,

= =T 4n=T[(e— (g5 + V)¢ =¥’ +n, (8.10)

where I' is a phenomenological parameter that can be scaled out, 7 is a Gaussian random noise term with
correlations (n) = 0 and (n(7, t)n(7,t")) >=2I'D §(F — 7)6(t — t') and D is the noise strength.

Before continuing, it will prove useful to re-case Eq. (8.10) in dimensionless units. Noting that while
Eq. (8.10) contains four parameters (¢, g,, I and D) it is effectively a two parameter model since gg and
I" can be eliminated by a simple change of variables. For example if the following definitions are made
F=F/qo, ¥ = ¢2¢, € = ¢ and t = 7/¢iT, then Eq. (8.10) becomes,

op _ oF e 22\« 43
Ty +(=(E-1+V2)?)o—9¢’+¢, (8.11)
where, A
F = /d:f qu (—E+1+V2)H) o+ % (8.12)

and (¢) = 0 and {(¢(Z,7)¢(2',7')) >= 2D’ §(Z — &')d(7 — ') and D’ = Dgd=8.

Equations (8.9) and (8.10) provide a relatively simple mathematical system that gives rise to periodic
solutions for . In the next several subsections the static (i.e., equilibrium) and dynamic properties of
this model in one dimensions will be discussed. In Section II a very similar equation will be used to model
another periodic systems, i.e., crystals. In crystals the field ¢ is proportional to the ensemble average of
the atomic number density and is a conserved quantity. The conservation law changes both static and
dynamics solutions and makes things a bit more complicated. Nevertheless it is instructive to consider

the simpler case as will be done in the next few paragraphs.

8.2.1 Static Analysis of the SH Model

The form of the SH free energy functional is symmetric in 1, i.e., it only depends on 2. This symmetry
leads to equilibrium solutions that are stripes in two-dimensions and planes in three dimensional. As will
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be seen in following sections when this symmetry is broken (by adding asymmetric terms such as 93)
other periodic symmetries can form such as triangular in two dimensions and BCC in three dimensions.
The mathematical form of the equilibrium solutions can be found by expanding v in a Fourier series and
then minimizing the free energy per unit length with respect to the Fourier coeflicients and wavevector,
q. More specifically 1 can written as,

Y= (Apem 4 Afeminan), (8.13)
n=1

where A, is an amplitude associated with the wave mode n. Substituting this form into Eq. (8.9) and
averaging over one wavelength gives,

T [T (Yo cmay W
F 2n7a " 25 ), dx<2( et (g3 + V) +

3

n,%,J

where w, = € — (¢> — (nqg)?)%. To find the lowest energy state F must be simultaneously minimized
with respect to A, for all n and ¢, i.e., the equations, dF'/dA, = 0 and dF/dg = 0 must be solved.
To simplify the task it is useful to consider a finite number of fourier components. For example the
simplest approximation is to retain only one mode, A;, which is equivalent to the approximation ¢ ~
(A1 + A7) cos(gx). In this limit the free energy per unit length becomes,

3
F = 7W1|A1|2 + §|A1|4 (815)

Minimizing with respect to A; gives, 9F/3(|A1]?) = 0 = —w; + 3|A1]?, with solutions

. 0 w1 <0

Substituting the non-trivial solution back into F' gives,

1 1
F= *EW% = *6(6 - (qﬁ - q2)2)2 (8.17)

The value of ¢ that minimizes F' is found by solving, dF'/dg = 0, which gives, ¢.q = ¢, and in turn,
|A1‘€q = ‘Allmin(QO) = 6/3~ (818)

Thus the solution that minimizes the free energy is,

¢eq = 2\/§COS(Qom)- (819)

and the minimum free energy/length is
Fstm'pe = *62/6~ (820)

Before discussing the dynamic behaviour of the SH model, it is interesting to examine Eq. (8.17),
which describes the free energy as a function of wavevector (or wavelength) and can be used to derive
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an expression for the ‘elastic’ energy associated with a stretch or compression of the striped phase.
Expanding Eq. (8.17) in Aa = (a — aeq)/aeq, Where a is the stripe wavelength (i.e., 27/q) and ae, is the
equilibrium stripe wavelength (i.e., 27 /q,) gives,

64rte [ Aa\> Aa\?
AF =F — Fypipe = co =42 Ay eg)? I 8.21
o = Gt (52) = i@ Ak (32) 4 (8:21)

The above equation shows a number of interesting features. To lowest order in Aa this model obeys
Hooke’s law (i.e., AF = k(Az)?/2), with an effective ’spring constant’ of 8(¢?|A1|eq)?. The spring
constant is thus proportional to the amplitude |A;|, which is in turn in proportional to e. In the next
section a model almost identical to the SH model will be used to describe crystal growth in which the
parameter e is related to temperature. In that context the crystal becomes ‘stiffer’ (i.e., k increases)
as the temperature is lowered. In the above expansion Aa/a., was considered to be small compared to
unity, however for large Aa/a., a periodic solution may not even exist. Consider for example the solution
for A,,in given in Eq. (8.16), i.e

|A1|7nzn \( \/ qo (822)

Since A is a real quantity (at least for this phenomena) there are no periodic solutions for A if

€< (q —q ) (8.23)

V@ —Ve<qg<y/@+ Ve (8.24)

The implication is that if the system is compressed or stretched too much a periodic solution no longer
exists (i.e., the lowest energy state is ¢» = 0). As will be discussed in the next section even when solutions
exist they can be dynamically unstable (an Eckhaus instability). In Fig. (8.3) the regions where periodic
solutions exist are depicted as a function of ¢ and e. The dynamical behaviour of the SH equation is
examined next.

Or solutions only exist when

8.2.2 Dynamical analysis of the SH model

Equation (8.10) describes dissipative dynamics that drive the system towards the equilibrium solution.
While it is very difficult to obtain exact analytic solutions for arbitrary initial conditions, insight can
be gained by considering a simple linear stability analysis about a) an initially uniform state and b) a
periodic equilibrium state. (Consider T' = 1 for simplicity). The stability of the uniform ¥ = 0 state can
be determined by linearizing Eq. (8.10) around ¥ = 0, i.e.,

N

D= (e~ @+ V) 0. (8.25)

where here 1) represents a small deviation away from the uniform solution. Equation 8.25 can be solved
by making the Ansatz for 9,

P(x,t) = Ag(t) cos(qx). (8.26)
where A, is the amplitude of the perturbation. Substituting Eq. (8.26) into Eq. (8.25) gives,
dA,(t
;t( ) — A1) (8.27)
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Figure 8.3: Phase diagram of one dimensional Swift-Hohenberg Equation. The diagonally hatched region
corresponds to regions for which periodic solutions do not exist in the one mode approximation. The
horizontally hatched region corresponds to regions for which periodic solution are dynamically unstable
(Eckhaus instability).

which has solution,
Ay =e? tAq (8.28)

where as usual (w1 = (€ — (¢2 — ¢*)?)). If w; > 0 (< 0), ¥ will grow (decay) exponential in time. Since
(q2 — ¢?)? is always positive this implies unstable (stable) growth for € > 0 (¢ < 0). Since (¢ — ¢*)? is a
minimum when ¢ = ¢, the system is most unstable (i.e., fastest exponential growth) when ¢ = ¢,. This
is the primary instability that gives rise to the periodic structure and is somewhat similar to Model B,
in that a finite wavelength is initially selected. However in the Swift-Hohenberg equation the wavelength
doesn’t change significantly since the equilibrium solution has a wavevector quite close to g,.

Perhaps a more interesting case is the stability of the periodic stationary solution (i.e., for e > 0).
Expanding around 9 = 1) (x) + d9) gives,

OO0 (=302, — (a2 + V*)2) 600+ 060 4. (8:29)

where for the sake of generality the equilibrium solution are represented as 1. = Zn(Aneiqm—i—A;‘Le_m‘ﬂ).
To solve this linear equation, 1) expanded in the following Fourier series,

n=N
S = bu(t)e'natr, (8.30)
n=—N

where N is in principle infinite, but for practical purposes will be set to one. The task is now to solve for
b, (t) in terms of ¢ and @ (a procedure known as Bloch-Floquet theory). Substituting d¢ in Eq. (8.29)
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gives

b, . . . . _
87:6”“11 _ anq—i-anelnqm_3 Z bn (A"LApez(nerer)qm + QA;anpez(nferp)qm + A;knA;k)ez(nfmfp)qm> \
n n n,m,p
(8.31)
where w,g10 = € — (¢2 — (ng + Q)?)2. Integrating over (¢/27 27/4. Jy =397 then gives;
q+Q o 0
abn * * *
SOy = D Wngt@bnOn =3 D b (Am ApSnimp + 245, 400 —mipi + Ap Ardn—m—p.;)
n n n,m,p
5 = wireby - 3 (bjmm—p Am Ap + 2bjm—p Al Ay + bjimip AL AY)
m,p
(8.32)
which utilizes the following identities,
2m/q
q (— 1 n=m
1 d i(n—m)qz _ 5n = )
or Jy  F : {o n+£m (8.33)

To simplify calculations consider a one mode approximation, i.e., |A1] = y/wq/3, and A, = 0 for
n =2,3,---. At this level of approximation Eq. (8.32) becomes,

ob; %
o = wiarby = 3(bj—2 AT+ 2b; |41 + bj12(A7)%). (8.34)

Making a similar one mode approximation for b, (i.e., b, =0 for n = 2,3,...) gives,

0b
cTtl = (wQrq — 6lA1[*)b1 — 3b_1 AT = (wqrq — 2we)b1 — b1 wy
b,
cTtO = (wq —6]A1[*)bo = (wq — 2wq)bo
ob_
8t1 (Wo—q — 6]A1[*)b_1 — 3b1(A})* = (wq—q — 2wg)b—1 — b1y (8.35)

Notice that by is conveniently decoupled from b; and b_;. Thus the solution for by is,
bo(t) = e~ Bwamea)p,(0), (8.36)

where 2w, —wg < 0 for small () and thus by decays expontially to zero and can be ignored. Making the
ansatz, b, ~ exp(At) gives rise to an eigenvalue problem, i.e.,

[ A— (WQJ;’ — 2wq) - (w;i o) ] [ bbjl } =0 (8.37)

The eigenvalues (A) are determined by setting the determinate of the matrix in Eq. (8.37) to zero, which
gives the solutions,

1
Ay = ) (WQJrq Twoq—4wg £ \/(WQJrq —WQ—q)* +4w] ) (8.38)
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a) b)

Figure 8.4: Eckhaus instability in the one dimensional Swift Hohenberg equation. In this figure the color
corresponds to the magnitude of ¢ and the horizontal and vertical scales correspond to space and time
respectively. In both instances the initial state was ¢ = 21/(e — (1 — ¢2)2)/3 cos(qz) + 1, where 7 was
random gaussian noise of amplitude 0.05. In Figs. a) and b) ¢ = 0.88 and 1.115 respectively.

Since b,, ~ e the solutions are unstable if either eigenvalue is positive. For ¢ ~ g, both eigenvalues are
negative and the system is stable. When ¢ is much larger or smaller than ¢, one eigenvalues (A) become
positive and an instability occurs. This implies that if the initial state is periodic, but the periodicity is
far away from the equilibrium solution, then any small perturbation will grow and the system will evolve
into another periodicity closer to the equilibrium one. This is known as an Eckhaus instability. When
such an instability occurs the wavelength (or ¢) will spontaneously change by either creating an extra
wavelength or deleting one.

To better understand the Eckhaus instability, it is instructive to expand A+ to lowest order in @ gives,

A2 — o2)202
)\+:_2<3q2_q3_(qoq)q)Q2+... (8.39)
Wy
A0 — a2)242
A_2wq2<3q2q§+W)Q2+m. (8.40)
q

The eigenvalue A_ is always negative or zero and thus not of much interest, however the coefficient of Q2
in Eq. (8.39) can be positive for some values of g. The boundary between a negative and positive value
occurs when € = egci(q) where,

(7¢* — a3) (a3 — ¢*)°
. (8.41)
3¢> - q3

This solution determines the boundary between periodic solutions that are stable and unstable. In Fig.
(8.3) the regions where periodic solutions are dynamically unstable are shown. When this instability
occurs the perturbations initially grow exponentially until a phase slip occurs in which one or more
periods is gained or lost, depending whether or not the wavelength of the initial state was too small or
large. Examples of such processes are shown in Fig. (8.4). In the next section a similar model will be
introduced to model crystal growth. For crystal growth the corresponding Eckhaus instability can be
associated with the nucleation of dislocations.

An additional interesting feature of this calculation is that it can be used to determine an effective
diffusion constant of the system. For perturbations around the lowest energy state (¢ = go in one-
dimension and wy, =€) Eq. (8.39) becomes

Ay =—4Q° + 0(Q)* + - (8.42)

€EEck =
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Or in other words the perturbations satisfy a diffusion equation (in the long wavelength limit) with
diffusion constant

VAT === 7
}}.);" (3( Ry M

Figure 8.5: Two dimensional ordering in the Swift-Hohenberg model in Eq. (8.10). In this figure the color
corresponds to the magnitude of 1). These simulations were conducted for (e, ¢,,I', D) = (0.1,1,1,0), in a
system of size (128 x 128) and Figs a), b) ¢), d) correspond to times ¢ = 100, 200, 400 and 800 respectively.

The discussion in this subsection has thus far focussed on the one dimensional properties of the SH
equation. In two dimensions the mean field equilibrium solutions remain the same (i.e., stripes), however
the dynamics are significantly more complex since the stripes can form in any orientation. A sample two
dimensional simulation is shown in Fig. (8.5). Ordering or coarsening of stripe patterns has been the
subject of many studies [69, 68, 55, 94, 30]. Earlier studies [69, 68, 55, 94] indicated a dynamic growth
exponent of n = 1/5 without noise and n = 1/4 with noise. Later studies showed that the exponent
changes with the magnitude of the noise and frozen glassy states emerge at zero noise strength [30].

The Swift-Hohenberg equation is a simple model system for studying the formation and ordering of
modulated or striped phases in 1D, as well as striped and hexagonal phases in 2D. It is also straight
forward to extend the model to more complex crystal structure in 3D by adding additional terms such
as a cubic term to the free energy functional in Eq. (8.9), i.e.,

3 4

F= /dF Bw (—e+ (g2 +V?)?) v+ a% + % : (8.44)
The additional term breaks the + symmetry of ¢ such that (for positive a) the energy is smaller for
negative . For example, for small a the stripe solutions still exist, however the width of the positive
portion shrinks and the negative portion grows. For large enough « the stripes break apart and form
dots or mounds as shown in Fig. (8.6). Energetically it is most favorable for these dots to order into a
triangular pattern. Notably grains of arbitrary orientation naturally emerge and form grain boundaries
when two grains hit. It is precisely these features that lead to the idea that such models could be used
to model crystal growth.

8.3 Phase Field Crystal (PFC) Modeling

As discussed in the preceding sections, and illustrated with the SH equation, continuum models that are
minimized by periodic structures contain much of the generic ingredients, such as elasticity, dislocations,
multiple crystal orientations and anisotropy, needed for modeling crystal growth, as illustrated in the
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Figure 8.6: Two dimensional ordering in the Swift-Hohenberg equation with extra cubic term in free
energy functional (see Eq. (8.44)). In this figure the color corresponds to the magnitude of 1. These
simulations were conducted for (¢, g,,I", D, ) = (0.1,1,1,0,1/2), in a system of size (128 x 128) and Figs
a), b) ¢), d) correspond to times ¢t = 100, 200, 400 and 800 respectively.

preceding section. It was this observation that motivated the development of the so-called phase field
crystal (PFC) model [61, 66], which is simply a conserved version of the SH equation, i.e., Eq. (8.10)
with the right hand side multiplied by —V2. This modification fixes the average value of 1 (1) and
effectively adds a cubic term to the free energy functional when 1) is non-zero. As seen in the last section,
cubic terms can give rise more interesting solutions such as triangular and BCC patterns in two and
three dimensions respectively. In addition to altering the equilibrium solutions, the conservation law also
makes a significant impact on the dynamics. For example in the SH equation a defect, such as an extra
stripe randomly inserted into an equilibrium pattern, can spontaneously disappear. However when the
dynamics are conserved, defect motion such as climb, can only occur by vacancy diffusion [25]. In other
words an extra row of atoms cannot simply disappear, they must diffuse away. While the SH free energy
functional was originally proposed for modeling crystal growth it was later recognized that this model
could be derived from classical density functional theory (CDFT). This derivation involves many crude
approximations, but does give some physical insight into the parameters that enter the model. In the
next few paragraphs this derivation will be outlined.

The derivation begins from the CDFT of freezing as proposed by Ramakrishnan and Yussouff [176]
and reviewed by Singh [187]. It should also be possible to connect the PFC model to the atomic density
theory of Jin and Khachaturyan, which was recently proposed [110]. A nice description of CDFT can
also be found in Chaiken and Lubensky [43]. In this theory the Helmhotz free energy, F, is derived
by expanding around the properties of a liquid that is in coexistence with a crystalline phase. In this
formulation F is a functional of the local number density, p(7) of atoms in the system. Formally the
solution is

2 3
AF df"(;—F 5p+%/d7?1d7?2 OF
’ !

dp1p20ps + -+

(8.45)
where, the subscript ¢ refers to the reference liquid state, dp = p — py and AF = F — F;. The above
expression is a functional Taylor series expansion. Ramakrishan and Yussouff showed that the second
term is equivalent the entropy of an ideal gas, i.e.,

1
a7 Sprops + — [ drdiydr:
kT 5o Spiopal, 0P T 3!/ T1ar207s

dp16p20ps3 |,

F
op

dp=pln (p) —dp (8.46)
¢ Pe
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and that the higher order terms are directly related to direct correlation functions, i.e.,
o"F
0p16p2 ... 0py

where C,, are direct correlation functions. These functions measure correlations between the atomic
number density at various points in space. For example C5 gives a measure of the probability that if an
atom exists at point 7 that another particle also exists at point 5. The advantage of expanding around
the liquid state is that liquids are typically isotropic and have short range order. This implies that the
correlation functions are also isotropic and short-ranged. In the crystalline state the correlations functions
are anisotropic, mimicking the symmetry of the crystalline lattice, and long-ranged (i.e., Bragg peaks in
Fourier space). Thus it would not be possible to expand around the solid-state correlation functions
since this would lead to free energy functionals that are not rotationally invariant. In what follows it will
be assumed that Cj is only dependent on the distance between the two points, i.e., Co(7,72) = Ca(r),
where r = |} — 73|. Reiterating, this is a key approximation that can only be made in the liquid state
and ensures that the free energy functional is invariant under a global rotation of the density field.
Using Eq. (8.47) the CDFT free energy functional can be written

= _Cn<F17F2)F37-"77?n) (847)

AF . 1 oL oL 1 o L I
dr {pln <Z> (5p:|2l/d7‘1d7"2C2(7"177"2)5,015p23'/d?"ldrgd?"gcg(rl,TQ,T3)5p15p25p3+...

kT

(8.48)
While this free energy has been used to study freezing transitions in a wide variety of systems [176, 187],
it is inconvenient for numerical calculations of non-equilibrium phenomena. Typically the solutions for
p that minimize F are very sharply peaked in space and consequently require a high degree of spatial
resolution such that it may require 100¢ (where d is dimension) mesh points to resolve a single atomic
number density peak.

In the next few pages several simplification will be introduced to develop a model that, while retaining
the essential features of crystals, is much easier to numerically simulate. It should be noted that the
simplifications are quite drastic, resulting in a model that is a poor approximation to the CDFT. The
goal is not to reproduce CDFT but to motive a phase field scheme that incorporates the ‘essential physics’.
Despite the inaccuracy of the resulting model it is an interesting exercise as the parameters of the simple
model can be directly related to the correlation functions that enter CDFT and thus give some interesting
insight. To match the resulting model with an experimental system a more pragmatic approach should
be taken, as discussed in section 8.7.

To begin the derivation, it is convenient to introduce the dimensionless number density field, n, defined
such that

n= (p - ﬁ)/ﬁ7 (849)
where p is constant reference density (usually taken to be the density of the liquid at coexistence). In the
following calculations n will be assumed to be a small parameter and the free energy functional will be
expanded to order n*. It should be noted that in the full CDFT solution, n is not small. For example, in
Fe at T = 1772K and p = 0.09A473 (i.e., close to the melting temperature) n can be on the order of forty
or fifty near the center of lattice cites [105]. Further simplifications are made by truncating the density
functional series in Eq. (8.48) at Cy and expanding C» in fourier space upto k*, i.e.,

C(k) ~ —Co + Cok?* — Cuk* (8.50)

where for convenience the subscript ‘2’ has been dropped. It is useful to note that the fourier transform
of this function (C'(k)) is related to the structure factor (S(k) = (|6p(k)|?)) as follows S(k) = 1/(1 —pC).
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Figure 8.7: Sketch of two point direct correlation function in Fourier space.

In this approximation C (k) has been expanded to the lowest possible order that captures the periodic
nature of crystalline systems. A sample sketch of such a function is given in Fig. (8.7). Essentially the
parameters C'O, Csy and Cy can be used to fit the first peak in the C. From a more practical point of view
these parameters can be used to fit various physical features of the material as discussed in references
[213, 198, 105] and in Sec. (8.7). Substituting C'(k) into Eq. (8.48) gives *

AF ~ p B* 22 44 n? n'
kBTVﬁNm(pZ) 5 V/d { n® + —n (2R*V +Rv)n—t3 +o (8.51)

where t = 1/2, v = 1/3, B! = 1 + pCy, B* = p(C2)?/4Cy, R = 1/2|C4|/Cq and V = [dZ = [ dadydz.
Since only one length scale (R) appears in Eq. (8.51) it can be eliminated by a simple length rescaling,
ie.,

= d 3 4
kBATf/ﬁ ~ In (p’;) + pzp p+R7 dFB (AB+BI(1+V2)2)ntT§+UH (8.52)
where 7 = /R and AB = BY — B®. This form is of course remarkably similar to the SH equation (see
Eq. (8.44)). The free energy in Eq. (8.52) contains only two parameters, B‘ and B®. The parameter B’
is the inverse liquid state isothermal compressibility ? (in dimensionless units) and as will be shown, B*
is proportional to the magnitude of the elastic constants. In physical terms the three parameters control,
the length scale and the energies scales of the liquid and solid states.

To relate Eq. (8.52) to the Swift-Hohenberg description a simple change of variables can be made,

'In real space variables, the expression in Eq. (8.50) becomes C(#1, 72 )=C/(|71 —F2|):(—C’o — V2 — C’4V4) 0 (™ — 72).
2In Ref. [62], B! was mistakenly referred to as the isothermal compressibility, instead of its inverse.

156



ie., 7=7Z/R, B' = B*(1+¢) and ¢ = n\/v/B7 gives,

AF AN Rd(Bm)z/ e, o n2, ¢ ¢
= (Lt dr | = (1 —g—+ = .
TV n<p£)+ > +— 59 +2( +V*) ¢ 93+ (8.53)

where g = t/vvB*. Similar to the SH free energy functional the transition from a liquid (i.e., n =
constant) to a solid (n periodic) occurs roughly when e changes sign. Since the field n is a conserved field
the thermodynamics are different from the SH model and the transition changes from being a second
order (in mean field theory [1, 93]) to first order as expected for a liquid solid transition. In this context
€ becomes negative as the temperature lowered or as the density increases. To evaluate the properties
of this very simple model various equilibrium and non-equilibrium properties will be derived in the next
few sections.

8.4 Equilibrium Properties in a One Mode Approximation

To evaluate various properties of this model it is useful to analytically determine the minimum energy
states of the free energy functional in mean field theory. Assuming that the system is in a crystalline
state and the reference density (p) is the average value of the density, the functional form of a periodic
density can be written down in terms of the reciprocal lattice vectors, G , 1.e.,

n= Z Na eG4 c.c. (8.54)
é

where c.c. is the complex conjugate and 75 represent the amplitudes of a given reciprocal lattice vector
mode. As discussed in section (5.1) these amplitudes can be interpreted as complex order parameters
of the crystal. In three dimensions, G can be written G = niqy + nogs> + n3ds, where (¢4, @, q3) are
the principle reciprocal lattice vectors describing a specific crystalline symmetry, (n1,n2,n3) are integers
and the summation in Eq. (8.54) refers to a summation over all ny, ny and ns. The convenience of this
description is that the amplitudes are constant in a perfectly periodic state. If the amplitudes are allowed
to vary in space and time then this description is quite useful for generating complex order parameter
models that describe multiple crystal orientations, elastic deformations, defects, etc. This was explored
in detail by Goldenfeld et al. [78] and touched upon in Sec. (5.2).

In the following sections the simplest approximation will be made for the equilibrium solid phase,
that of a perfect single crystal in a ‘one mode approximation’. For the purpose of this book a ‘one-
mode approximation’ will refer to an approximation in which the summation only includes (nj, ng,ns)
values that correspond to the lowest order (i.e., smallest) values of G needed to reconstruct a given
crystal symmetry. While this approximation cannot be used to describe the mean field equilibrium
functional forms for n in CDFT it is reasonably accurate for the PFC model and exact in the limit
¢ ~ (B* — B*)/B® — 0. In the following sections this approximation will be used to derive the phase
diagram in one, two and three dimensions.

8.4.1 Three dimensions: BCC lattice

To evaluate the equilibrium states of the PFC model in three dimensions the free energy of various
crystalline symmetries must be compared. In a one mode approximation it turns out that a BCC
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symmetry minimizes the free energy functional. For a BCC crystal G can be written in terms of the
following set of principle reciprocal lattice vectors,

_,_27r(§c+g) 4_27r<£+73> and #_27r<g+2> (8.55)
q1 a \/5 ) q2 a \/5 q3 a \/5 s .

where a is the lattice constant. The values of (n1,m2,n3) in Eq. (8.54) that correspond to a ‘one-mode
approximation’ are then (nq,n2,n3) = (1,0,0), (0,1,0), (0,0,1), (1,—1,0), (0,1,—1), and (—1,0,1). Each
of the corresponding G=m q1 + n2ga + ns3ds vectors has magnitude, 27 /a. Substituting these reciprocal
lattice vectors into Eq. (8.54) and assuming all the amplitudes are equivalent, (i.e., s = ¢/4, where the
factor of 4 is for convenience) gives,

n = ¢ [cos(qx) cos(qy) + cos(gx) cos(qz) + cos(qy) cos(qz)], (8.56)

where ¢ = 27/(v/2a). This functional form can now be used to calculate various equilibrium properties.
To determine the equilibrium states, the next step is to determine the values of ¢ and ¢ that minimize
the dimensionless free energy difference, F', which is defined to be

3 4

1o e e (B, BT
F(g,¢) = 7/ dx/ dy/ dz | =n® + =n (2V2 + V) n -t 40’ (8.57)
a Jo 0 0 2 2 3 4

where for convenience the constant terms in Eq. (8.52) have been subtracted. Substitution of Eq. (8.56)
gives,
135v

556 . (8.58)

Flg.0) = S[B' -8 ()] 6~ 26"+

The value of ¢ (and the lattice constant a) can now be obtained by minimizing with respect to ¢ (i.e.,
dF/dq = 3B*(—q + 2¢®) = 0), which gives,

Qg = 1/V2 (8.59)

or a = 27 /q = 27 (in dimensionless units). Substitution of this expression into F' gives,

3 135v

t
F(q. = “AB¢? — - ¢ 4, 8.60
(s ) = SABS = 160+ 520 (3.60)
where AB = B* — B®. For illustrative purposes F(geq, ¢) is plotted as a function of ¢ in Fig. (8.8a) for
several values of AB to highlight the first order phase transition from a liquid (¢ = 0) to solid (¢ # 0)
state. The value of AB at which the transition occurs (i.e., when the two minima are equal) can be

obtained by first minimizing F' with respect to ¢, i.e., dF'/d¢ = 0, gives,

é 1 (2t + /42— 451}AB> (8.61)

“” 450

(note three solutions of dF/d¢ = 0 exist, ¢ = 0 corresponds to the liquid state and ¢ = 4(2t —
VA4t?2 — 450AB)/45v an inflection point). Substituting this expression back into the free energy den-
sity, and solving the equation F'(geq, peq) = 0, for AB gives the melting value, ABy, since F' = 0 is the
energy density of the liquid state. The solution is,

ABy, = 32t%/(405v). (8.62)
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Figure 8.8: (a) Free energy density as a function of ¢ at three values of AB = B — B with (t,v) =
(1/2,1/3). The top, middle and bottom curves correspond to AB = AB;;+0.005, AB;s and AB;;—0.005.
(b) Sketch of typical gas/liquid/solid phase diagram. As illustrated in this figure the parameter AB will
decrease when the density is increased of the temperature is decreased.

This calculation shows that a first order phase transition from a liquid to solid state occurs at AB =
AB); and the order parameter for the transition is ¢. From this point of view the “phase” field that is
usually introduced in traditional phase field models to describe liquid/solid transition is not an arbitrary
field introduced for convenience. As discussed in earlier chapters, this field is the amplitude of the number
density field. It is instructive to probe the physical significance of the parameter ABj;. Intuitively one
expects that this parameter is related to temperature. To see this it is useful to substitute the definitions
of B and B* (i.e., B* =1+ pCy and B* = pC3/4Cy) into AB to obtain,

AB =1+ p(Co— C2/4Cy). (8.63)

Next noting that the maximum of C' occurs when k% = Cy/2C or when C* = —Cjy + C2/4C (see Fig.
(8.7)) gives, X
AB=1-pC*=1/S(k"). (8.64)

where S(k*) is the maximum of the structure factor. Thus as the peak in S(k) increases (which is
increasing the nearest neighbour correlations) a transition to a crystalline state is triggered. Additionally
as the average number density (p) increases AB decreases and a transition to the crystalline state occurs
as expected. Recalling that C* is the peak in C along the liquid coexistence line, and noting that it
is roughly constant along this line indicates that AB decreases with increasing density or decreasing
temperature as illustrated in Fig. (8.8b). Thus changing AB is equivalent to changing the temperature
or the average density.

In the preceding calculations it was explicitly assumed that a single phase state was formed (a crys-
talline phase) and it was convenient to expand the n around 7 = 0. However, there exists the possibility
of phase coexistence between the liquid and crystalline phases. In order to account for this possibility
(and to derive the liquid/crystal coexistence lines) a specific p must be chosen to expand around. The
most convenient (and consistent) value to expand around is the density along the liquid coexistence line,
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i.e., p = p¢. In this instance the constant terms in Eq. (8.51) disappear and the coefficients are evaluated
at py, i.e., Bt=1+ pzéo and B* = pgé§/4é'4. As will be seen the transition to the crystalline phase
occurs as the average value of n (which is now not zero) is increased consistent with the earlier discussion.
To determine the equilibrium states, for BCC symmetry, n, must be added to Eq. (8.56), i.e.,

n = n, + ¢ [cos(qx) cos(qy) + cos(gx) cos(gz) + cos(qy) cos(gz)] , (8.65)

Substituting this expression into Eq. (8.57) and minimizing with respect to g gives geq = 1/ V2 as before
and,
’ n3 4

B n 3 1
F(eq, ¢, 10) = ?ng - tgo + vy + 3 [AB —n,(2t — 3vn,)] ¢* — 1 [t — 3um,] & +

135v

4
5rg O (8:60)

For illustrative purposes this free energy is plotted as a function of and ¢ in Fig. (8.9). For the parameters
used in this figure the free energy has two minima, one corresponding to liquid at (n,,®) = (0,0) and
one for a crystal at (n,, ¢) ~ (0.03811,0.3870). 3

.
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Figure 8.9: Free energy as a function of n, and ¢ as described by Eq. (8.60) for B = 1, B® = 0.925, and
(t,v) = (1/2,1/3).

The coexisting equilibrium densities of the solid and liquid phases can be found by first minimizing
F with respect to ¢ as before to obtain,

4
Dvee = o (2t — 6un, + \/4152 — 450AB + 33vn, (2t — 3vno)> (8.67)

Equation (8.67) is then substituted into Eq. (8.66) to obtain the free energy of the crystal as a function
of n,. To obtain the equilibrium coexistence lines this free energy must be compared with the liquid state

3As an aside the reader may notice that the coefficient of $2 contains the term —n, (2t — 3un,). The implication is that
for large n, this coefficient is positive which in term implies this term favors a liquid state. This unphysical result is simply
a consequence of the small n expansion. If done more carefully it can be shown that these terms are just the lowest order
expansion of 1/(1 + n,) — 1 which always decreases as n, increases.
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free energy (i.e., Eq. (8.66) at ¢ = 0),

- Bf nd nt
Flia = —_p2 0 4 0, )

5 Mo 3 +v 1 (8.68)
A sample plot of the liquid and crystal free energy densities is shown in Fig. (8.10a) at B = 1 and
B* = 0.925. The equilibrium liquid (n,) and crystal (n,) densities can be obtained in the usual manner,
i.e., by the common tangent rule (see Fig. (8.10a)) or by the Maxwell equal area construction rule (see
Fig. (8.10b)). To perform the common tangent construction, it is useful to expand the solid and liquid

0.02

3 e (- Mo

F (x10%)

-0.01

0 0.02 0.04 0.06

Figure 8.10: Comparison of liquid and crystal free energy densities (a) and chemical potentials (b) for
B =1, B* = 0.925 and (t,v) = (1/2,1/3). In (a) the dashed line is the common tangent that determines
the equilibrium liquid and crystal densities, ny and n,. In (b) the dashed line corresponds to the chemical
potential at which the upper triangle has the same area as the lower triangle.

free energies about the density where the liquid and crystal free energies are equal. This density is given
by

n* = (t — 3v/1545¢2 — 46350AB/103)/3v. (8.69)

Repeating these calculations for various values of Bf and B® leads to liquid/crystal coexistence lines
show in Fig. (8.11) for three values of B’ as a function of AB. As can be seen in these figures increasing
BY and B®, with AB fixed, decreases the miscibility gap (i.e., the density difference between the liquid
and solid phases). As will be shown in Section (8.4.4) elastic moduli tend to increase with increasing B”.
This has the effect of reducing the liquid/crystal interfacial thicknesses.

The preceding calculations implicitly assume small n (and small n,). For small n, the relevant phases
are the liquid and BCC phases. However for larger positive values of n, other structures minimize the
free energy density, such as a two-dimensional triangular lattice of rods or at even larger values of n, a
one-dimensional ordering of planes or stripes. Thus to obtain the complete phase diagram between all
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Figure 8.11: Sample liquid/crystal coexistence lines. In all figures the lines on the left (right) are the
liquid (crystal) coexistence lines. The value of B’ is a), b) and c) are 0.1, 1.0 and 10.0 respectively.

phases, the free energy for an array of triangular rods and striped planes must be evaluated. A similar
procedure to that used in this subsection can be then used to construct coexistence lines between these
various phases. The next two subsections work through the steps required to calculate the the free energy
of rods and stripe phases in a simple one-mode approximation.

8.4.2 Two dimensions triangular rods

It is straightforward to extend the calculations in the preceding section to a two dimensional system with
triangular symmetry. For a triangular system the principle reciprocal lattice vector are

. 2r (V3. 1. R
Ch——? <2$+2y> and C]Q—;(ZJ) (8.70)

In a ‘one-mode’ approximation the lowest order reciprocal lattice vectors (é =mn1§1 + nads) correspond
to (n1,n2) = (1,0),(0,1) and (-1, —1). Assuming the amplitudes (i.e., 75) are constant this lowest order
set of vectors leads to the following approximation for n,

n="mn,+ ¢ (; cos (3%3/) — cos(gx) cos <\(/]§y>> , (8.71)

where ¢ = (27/a)(v/3/2) and —n; = —ns = 13 = ¢/4. Substitution of this form into the free energy and
minimizing with respect to ¢ gives qeq = V/3/2 and

Bt n3 ni 3 1 45v
F — 224yl L P AR (2t — 2 - 34204 (872
(Geq Py M0) 5 o t3 +v 1 + 16[ 1o (2t — 3un,)] & 16 [t — 3un,] ¢° + 512(/5 (8.72)

Minimizing F' with respect to ¢ gives,

i = (t — 3uny + /2 — 150AB + 12n,0(2t — 3vno)) (8.73)

4
15v
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The liquid has the same free energy as in the BCC case and the density at which the liquid and solid free
energies are equal occurs when,

ne = n* = (t — 3y/185t2 — 5550AB/37)/3v (8.74)

A two dimensional phase diagram of the liquid phase with the triangular phase is obtained by comparing
the minimized free energy of the triangular (Eq. (8.72) and liquid (Eq. (8.68)) phases. An example of
such a phase coexistence is shown in Fig. (8.12). As noted in the last section different solutions arise for

5
© ot Triangular
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F (Planes) -
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ol PR I SV S S
0 0.2 0.4
n

Figure 8.12: Sample phase diagram for a two dimensional system for B = 1. The labels indicate the
equilibrium phases and the unlabeled regions are coexistence regions.

large values of n,. Increasing n, further gives rise to a striped phase and the coexistence of the stripes
with the triangular phase should then be considered.
8.4.3 One dimensional planes
In one dimension the one mode approximation for n is simply
n =n, + ¢ cos(qr) (8.75)

Substitution of this form into the free energy leads gives and minimizing with respect to ¢ gives gy = 1
and

B 2 ni nf; 1 2 3 4
F(Geq, ¢, 10) = 7710 - t? + vq + 1 [AB — n,(2t — 3vn,)] ¢~ + v3—2¢) . (8.76)

Minimizing Eq. (8.76) with respect to ¢ gives,

heq = 21/ —3VAB + 3un, (2t — 3un,)/3v (8.77)
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The liquid has the same free energy as in the BCC case and the density at which the liquid and solid free

energies are equal occurs when,
n* = (t—vt?—3vAB)/3v (8.78)

When the free energy of this state is compared with the 2D triangular rods and 3D BCC phases it is
found that the 1d planes are the lowest energy state for large values of n, and a coexistence between
triangular rods and stripes can occur. This coexistence is also shown in Fig. (8.12). The complete phase
diagram that includes all phases studied is shown in Fig. (8.13). A similar phase diagram of the original
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Figure 8.13: Sample phase diagram for a three dimensional system for B¢ = 1. The labels indicate the
equilibrium phases and the unlabeled regions are coexistence regions.

SH parameter set can be found in the thesis of Wu [212].

8.4.4 Elastic Constants of PFC Model

One of the motivations for studying a phase field model that resolves the atomic scale is that it natural
contains elastic energy. In general the elastic energy contained in the free energy functional can be
evaluated by considering an expansion around an unstrained state, i.e.,

n(7) = Neq (7 + ) (8.79)

where 4 is a displacement vector and 7., is an unstrained equilibrium state. The free energy can now be
formally expanded in the strain tensor, U;; = (Qu,;/0x; + Ou;/0x;)/2, i.e,

of A
Jea s (anj>eq Vits (W)eq et
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(8.80)

1
Flng(+ ) = 7 [ a7




where the Einstein summation convention over like indices has been adopted and f for the example free
energy given in Eq. (8.51) is f = Bn?/2 + B*/2n(2V?2 + V*4)n — n3/6 + n*/12 . By definition f., is a

minimum at ne, thus
of
=0. 8.81
<5Uij > eq (551

This leads to the following result,

1 1 0% f
AF== [ ar| = (=22 ) wvau,+--
V/V T[Q(aUklanj>eq b Vi

where AF = F(neq(7 + @) — F(neq(r)) is the increase in energy due to the deformation. This implies
that the elastic constants can be formally written,

1 0 f
Kim=— | di (=22 ) . :
7 /V T(anjaUkz)eq (8.83)

and in turn that the elastic constants will automatically have the symmetry of the equilibrium state.
To evaluate the coefficients for a specific crystalline system the most convenient representation is the
amplitude expansion, i.e, Eg. (8.54). In this representation deformations of lattice are represented by
NG = MNeg exp(z'C_j - ), where 4 is the displacement vector. Details of these calculations will be given in
Section (8.6).

(8.82)

8.5 PFC Dynamics

The dynamics of the dimensionless number density difference, n, is assumed to be dissipative and driven
to minimize the free energy functional. Since n is a conserved field one would expect the dynamics to
obey the following equation of motion

0 oF
a—;‘ =TV 49 =TV [(B' + B* (2V> + V') n— tn® + on’] 4+, (8.84)
A more detailed derivation of this equation is discussed in Chaiken and Lubinsky [43] and Khachaturyan
[117]. In a detailed treatment of solid hydrodynamics, Majaniemi and Grant [147] have shown that the
long-time and long wavelength limit of density dynamics can be fairly accurately accurately described by
the equation
9?p dp = - 0F
— — =V (pV— , 8.85
oz 0% PNy ) TS (8.85)
where [ is a friction coefficient and ¢ is a Guassian random noise term satisfying the usual fluctuation
dissipation theorem. This form was first proposed by Stefanovic, Haataja and Provatas [188]. The form
without the inertial term (second order time derivative) was proposed by Evans [71] and Archer [11].
Equation (8.85) can be expressed in terms of the reduced density, n, as

9°n on 1

_ ¢
o2 "ot T kv

Vo (L4 n)V [(B'+ B (292 + V) n— tn? + on’]) + . (8.86)
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where, in this instance, use of this equation implies that the coefficients of the PFC free energy take on
their dimensional form. Simplifying for small n, Eq.(8.86) becomes

182 0
L+ G ATV (B B2V 4 V) i 4 o] 4 (85)
where 1
r=__ Lt 8.88
BkpTVp?’ o

(n) = 0 and (n(F1, t1)n(F2, t2)) = —2kpTpV?8(71 — T2)d(t1 — t2).
Most of the calculations presented in next sections only consider the limit in which 8 — oo, i.e.,

0

S ~DV2[(B'+ B7 (2924 V")) n— tn? + vn®] 41 (8.89)
A full treatment of the computational subtleties of the extra second order time derivative in Eq. (8.87)
is beyond the scope of this book.

8.5.1 Vacancy Diffusion

Consider a perfect lattice with one ‘atom’ taken out. On atomic length and time scales the vacancy
created by the missing atom will jump from site to site and eventually diffuse throughout the lattice. In
the PFC model the density at the vacancy slowly fills in and the density at neighbouring sites slowly
decreases as the vacancy diffuses throughout the lattice. A simulation of the PFC for this phenomena
is shown in Fig. (8.14). To highlight the diffusion of the vacancy, the configurations shown have been

a) b
.-e
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¢)
A 00.0.01
LAAA A AL
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00.0.0 0‘0.0.0‘0.0

Figure 8.14: Vacancy diffusion. In this figure the grey scale corresponds to p(x,y,t) — peq(x,y), where
p(z,y,0) corresponded to peq(z,y) with one ‘atom’ missing.

subtracted from a perfect lattice.
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To determine the time scales for vacancy diffusion it is useful to perform a Floquet analysis or a
linear stability analysis around a periodic state (as was done for the Swift-Hohenberg Equation). The
two dimensional state equilibrium state can be written in the usual manner, i.e.,

Neg = Mo + Z njeiéj‘F +c.c. (8.90)

where éj are the reciprocal lattice vectors for the equilibrium state and n; is complex amplitudes asso-
ciated with wave mode j. The field n is now perturbed around a equilibrium crystal phase (n.q), such
that n = neq + on, and in turn the PFC model to order dn becomes,

% =TIV?[B' + B* (2V? + V*) — 2tny + 3unZ,] on. (8.91)

The perturbation can be written as,

on = B;(t ei(éﬁé)'F + c.c. 8.92
fi
J

It turns out that the largest eigenvalue can be obtained by keeping by the j = 0 term, i.e., dn =
Bye'@ T + c.c.. Substitution of dn into Eq. (8.91) and average over the unit cell gives

)

= ~IQ? (B‘f — 2tny + 3vn) + 30 Y _ |n;|* + B"(—2Q° + Q4)) By

Q

—rgQ? (BZ — 2tn, + 3vn2 + 30 \nj|2) Bo, (8.93)

where a one mode approximation was assumed for the amplitudes and a small Q) expansion was made to
arrive at the last line. Since a diffusion equation has the form dc/dt = D,V?c (or dc/dt = —D,Q?c in
fourier space), the diffusion constant can be immediately written down and is

D,=T (Be — 2tn, + 3vn2 + 3v Z |77j|2> , (8.94)

For a BCC state in a one mode approximation . |n;|? = 6]n1]? = 3¢2../8, where ¢y, is given in Eq.
(8.67). Similarly for the two dimensional triangular state > |n;|* = 3|m1|> = 3¢7,,/16, where ¢y, is given
in Eq. (8.73).

For a comparison with molecular dynamics simulations it is useful to consider the number of time
steps needed to simulate some characteristic scale such as the time needed for a vacancy to diffuse one
lattice space, i.e.,

p = a?/D,. (8.95)

Numerically it takes roughly 500 to 1000 time steps to simulate one diffusion time using the PFC model.
In MD simulations the time step is roughly a femto second (107°s). In the table below the number of
time steps needed to simulate one diffusion time in MD simulations of Gold and Copper is shown for
several temperatures. The number of time steps varies from 10° to 10!! implying that PFC is from 10°
to 108 times faster. While this is a great advantage (and in fact the reason for using this approach) it is
important to note that the dynamics are inappropriate in some instances. For example in brittle fracture,
cracks tips move at velocities similar to the speed of sound, clearly much faster than diffusive time scales.
In constrast at low temperatures the vacancy diffusion time may be years or decades, many times slower
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than the time scale for a particular experimental measurement or material process. Several extension of
to the dynamics have been conducted to address both issues by adding higher order time derivatives in
the former case [188] and by introducing an energy cost for vacancies to dissapper [46]. In addition in
a study of solidification in collodial systems other dynamical forms that are more faithful to dynamic
density functional theory were examined [198].

Material Temperature Diffusion time # MD steps
Copper 650°C 0.20 ms ~ 1011
(Theit = 1083°C) 850°C 2.51 pus ~ 107
1030°C 0.23 ps ~ 108 (8.96)
Gold 800°C 0.26 ms ~ 101
(Thelt = 1063°C) 900°C 33.2 us ~ 1010
1020°C 5.53 us ~ 107

8.6 Multi-scale Modeling: Amplitude Expansions (Optional)

In Section (8.4) the dimensionless number density field was expanded in terms of the amplitudes (or
complex order parameters) of the periodic structure of interest (i.e., BCC in Section (8.4.1) and hexagonal
in Section (8.4.2)). The calculations performed in those sections assume that the amplitude of each mode
was constant (e.g., |n5(7)| = ¢/4). This approximation is quite reasonable in an equilibrium state and
can be exploited to calculate phase diagrams and elastic constants. However, much more information
can be retained if the amplitudes are allowed to vary in both space and time. As studied previously,
liquid/solid interfaces can be described by an scalar amplitude (or order parameter) that is finite in the
solid phase and decreases continuously to zero in the liquid phase as depicted in Fig. (8.15). Similarly a
dislocation can be modeled by a rapid change in the amplitude.

Amplitude
\(/‘H’lase Field Limit”

\
N

<
Lattice spacing \//)
= a ~ Interfacial width
=W

Figure 8.15: Schematic of liquid solid interface. In this figure the solid line corresponds to the number
density profile and the dashed line to the amplitude of this profile.

A simple change in the magnitude of a scalar amplitudes does not, however, capture the local defor-
mations in the lattice that give rise to long range elastic fields associated with dislocations. In traditional
continuum elasticity theory, this lattice distortion is represented by a displacement field (%) that describes
the distance an atom is from some idea equilibrium lattice position. In the amplitude description this
displacement can be reconstructed by allowing the amplitudes to be complex. Complex numbers can be
written ~ ¢ e, where the spatial dependence of the phase (6 = G- @) can allow for local displacements
as will be highlighted in the next few pages.
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A key question to be addressed is how can equations of motion for the complex amplitudes be system-
atically constructed? For the PFC model, Goldenfeld et al. [78, 79] have published a number of papers
that discuss various methods (so-called “quick and dirty”, renormalization group and multiple scales
analysis) for answering this question. While the mathematics behind these calculations can be lengthy,
the basic physical assumptions and ideas underlying these calculations is relatively straightforward. To
begin the calculations the number density field is represented in the usual fashion, i.e.,

n= Z (77@ exp [zé . F] + 15 exp [—zé . FD (8.97)

where 75 is a complex variable that is assumed to vary on length scales much larger that the density
field itself as depicted in Fig. (8.15). Next consider substituting Eq. (8.97) into the PFC model (Eq.
(8.89)), multiplying both sides of the resulting equation by exp[fié' - 7] and integrating over a unit cell.
Schematically this is depicted in one dimension as

xz+a
/ dx e 10 %TZ =.... (8.98)

This integration can only be performed if it is assumed that 75 is constant over the integration range (i.e.,
from = to x 4+ a). This is the essential approximation that assumes the existence of two well separated
length scales; a “fast” length scale associated with rapid variations on the atomic scales (i.e., a in Fig.
(8.15)) and a “slow” length scale associated with variations of the amplitude around interfaces (i.e., W
in Fig. (8.15)) and dislocations. In some sense this multiple-scales approximation (W >> a) can be
thought of as the ‘phase field limit’, since traditional phase field models implicitly assume interfaces are
much larger than atomic spacing, as discussed in previous chapters. For the PFC model this limit is
equivalent to the limit in which (Bf§ — Bg)/Bg (or € in the Swift-Hohenberg equation) goes to zero. For
a detailed discussion of the various formal perturbation theories dealing with this issues, the reader is
referred to references [54, 78, 80, 79].

Despite the complexities of constructing a formal perturbation theory to justify multiple-scales expan-
sion it is relatively straightforward to derive equations for the amplitudes that incorporates the essential
physics of crystallization, elasticity and plasticity. Considering that the PFC equation is itself a relatively
poor approximation to classical DFT, it is perhaps not that important to develop amplitude models that
are accurate descriptions of the PFC model. From this point of view, equations of motion for the am-
plitudes can be thought of as fundamentally motivated phenomenological models in themselves. In the
following few pages a simple derivation of amplitude equations will be presented.

When Eq. (8.97) is directly substituted in Eq. (8.89) the following expression is obtained,

iG,.r Oy iGj7 x
Ze < a—tj +ce = Ze “iTL; [BY + B*(2L; + L3)] n; + c.c.
J J
_tz [ei(@j+ék)-r*£i+j 13m0 ei(—@j+@k).r"£_i+j Wi + c.c.
7,k

+uy [ei(G”G”G’)'FﬁﬁkH g + € GTERTCOTL L e
Jiksl

+6i(éj*ék:+dz)-7_"£ (=G +Gr+Gh)-

Sk LML+ € L kel TN
+c.c] (8.99)
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where £ is an operator such that £; = —G? + Qiéj -V + V2 and the notation is such that Liyr =
—|éj + G2+ Qi(éj +G)-V+V2or Li = —\éj —Grl2+ 2i(éj —Gy) -V +V2, etc.. For convenience
the subscript j has been used to represent a given reciprocal lattice vector. It will be useful in what follows
to note that the operator 2£; + 13? that appears in the linear term reduces in a one-mode approximation
to

204+ L5 =(-1+G;)2-14G;) =-1+G; (8.100)

where G = V2+2iéj -V and in dimensionless units |GZ| = 1. Multiplying Eq. (8.99) by [ A7 exp[—iG - 7]
and integrating over one unit cell in the limit W >> a gives,

OMNm

5 = (-14+Gn) 4 [AB+ B””Q?n] N — tz [6m,jk MMk + O, — itk nimk + c.c.]

ik
0> Gkt MM+ Okt MRTTE - Ot M+ O j— ket M MaT+-C-.] p (8.101)

3okl

where, AB = BY — B* and the delta functions in the above expresion are actually Kronecker delta
functions for reciprocal lattice vectors, i.e.,

5m’j+k+l5{ 7T OO (8.102)

and 07, = Om,—j, etc.. To continue the discussion a set of reciprocal lattice vectors must be specified.
:

In the following several subsections reciprocal lattice vectors in one, two and three dimensional cases are

considered.

8.6.1 One dimensions

In one dimension it is sufficient to make G =1 (in dimensionless units), i.e.,

n = n(z,t)e™ +n*(z,t)e™ ™, (8.103)
and thus Eq. (8.101) reduces to
% =(-1+ g)é(;;id = (-1+G){[AB+ B*G*] n+ 3v|n|*n} (8.104)
where G = 92 + 2i0,,, and
Fiqg = / dz [AB|n|* + B*|Gn|* + 3v|n|*/2] . (8.105)

To gain more insight into this result it is useful to consider a small deformation, i.e., p(7) — p(F+ @)
or in terms of the amplitude,

n= ¢ expliG - ). (8.106)
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Substituting this expression into Eq. (8.105) and expanding to the lowest order gradients in ¢ and

gives,
]:1,1 = 2/dx

where U,, is the linear strain tensor (i.e., Uy, = Ou,/0x) and “ --” represents higher order derivatives.
The result is quite interesting, the first three terms are identical in form to Model A and the last term is
the just the linear elastic energy. Essentially this model describes a phase transition with elasticity. The
elastic constant is proportional to ¢ so that elastic energy self-consistently disappears in the liquid state
which is defined to be ¢ = 0.

Before continuing to higher dimensions it should be noted that the approximation given in Eq. (8.103)
does not allow for the average value of n to vary in space. This approximation does not allow for
coexistence between liquid and crystal phases over a range of average densities, i.e., there is no miscibility
gap or volume expansion upon melting. This feature can be taken into account as shown in one-dimensions
by Matthews and Cox [149] for the conserved SH equation and by Yeon et al. [217] for the PFC model
in two and three dimensions. For these calculations the field n is written,

2

AB
+ 2B Uz, + -

2

9¢

o (8.107)

¢2+%¢4+23w

»

n = ny(x,t) +n(z,t)e™ +n*(z,t)e ™™, (8.108)

where now both 7 and n, are “slow” variables in space, i.e., it is assumed that they both vary on length
scales much larger than the atomic spacing. Substitution of this expression into Eq. (8.89) and integrating
over e~ 9% gives;

0 -
67:57 = (=1+G) [B'+ B°G? — 2tn, + 3un? + 3uln|?] n = (_1+g)5—n* (8.109)
and over 1 gives 4
on, 2 Y * 2 4 2 9 3 ) ) ad
5 = IV [(B" + B*(2V? + V%) + 6v[n|*) n, — tnZ + vnd — 2tn|*] =V - (8.110)

The effective free energy functional F’ appearing in Eqs. (8.109) and (8.110) is given by

3 Gn 3 4
F = /dx {(AB|772 + B®|Gn|* + ;|n4> —no(2t — 3un,)|n|* + (no 2°n0 - t% + vzo)}
(8.111)
and G,,, = B’ 4+ B*(2V? 4 V*4). In long wavelength limit it is possible to replace —1 + G with —1 in Eq.
(8.109) and G,,, by B as is discussed in some detail by Yeon et al. [217].

8.6.2 Two Dimensions

In two dimensions the equilibrium state of the PFC model is triangular and the principle reciprocal lattice
are vectors are

. 1 N L
0 =—3 <\/§:c+y) D B =17 (8.112)

4Think of this like €?®® where G = 0 is the wave vector associated with the density change, which aries on long
wavelengths.
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In a one mode approximation all the reciprocal lattice vectors (i.e., G= lq1 + mg>) with length one must
be included. The full one-mode set is then corresponds to (I,m) = (1,0),(0,1), (=1, —1) and are depicted
in Fig. (8.16). For this two dimensional system the atomic density field n becomes,

@l

RN
Q!

Figure 8.16: Reciprocal lattices vectors for one mode approximation to triangular lattice.

j=3 = j=3 L
n="Y 0 (F )T 4y (e T (8.113)
Jj=1 j=1

Repeating the steps outlined in the preceding section then gives,

on, OF: z *
W G- 02 =G (8B4 B G + 30 (42 = ) -2 [[ ] (5119
J i#]
where, G; = V2 + Ziéj .V and
AB 3v > 3v >
de:/dF 2A2+4A4+Z{Bxgj7]j|2_277j|4} =2t | [ +ee (8.115)

Jj=1 Jj=1
with the representation A% =", [n;|?. Again, it turns out that the approximation (G; —1) — —1 can be
made in Eq. (8.114)

As in the one dimensional case, it is interesting to consider a small deformation, which is represented
in the complex amplitude by n; = ¢exp(z’éj - ). Substitution of this expression in Eq. (8.114) gives in
the long wavelength limit,

JT:2d =~ /d'F

where U;; = (0ju; + 07u;)/2 is the linear strain tensor. The first three terms in Fyq describe a double-
well potential with an odd term to generate a tilt between the wells. This leads to a first order phase

2
45 - 3
3AB®? — 4tp® + ?v¢4 +6B*|V¢|? + 3B” {§ : §U5 4+ UpnUyy + 2U§y} ¢2](8.116)
=1
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transition from a liquid state (¢ = 0) at large AB to a crystalline phase (¢ # 0) at low or negative AB.
This is precisely analogous to the phase filed free energy functional that was discussed in section (2.2.5).
The fourth term is the usual surface energy contribution that appears in nearly all traditional phase field
models. The last set of terms are the elastic energy (which as before is negligible in the liquid state).
Written in this form the independent elastic constant can be immediately read off (see for example
reference [134], pages 32 to 35) and are Cy; = 9B%¢?, C1o = Cyq = C11/3. As in the one dimensional
case, this calculation can be extended to include a miscibility gap in the density field [217].

8.6.3 Three Dimensions

In three dimensions the equilibrium crystal state of the PFC model has BCC symmetry, for small un-
dercooling. For large undercooling FCC and HCP symmetries are possible [106]. For BCC crystals the
principle reciprocal lattice vectors are

Go= @925 =@+EV2 5 G=(G+2)V2 (8.117)

(0
In a one mode approximation the lowest order reciprocal lattice vectors (C_j = 1§1 + m@> +ngs) correspond
to (l7 m, n) = (L Oa 0)7 (07 la 0)7 (07 Oa 1)7 (17 713 0)7 (07 la 71)7 (717 07 1) or

G = @+9)/V2, , Ga=(2+2)/V2, , Gs=(5+2)/V2,
Go = G-2/V2, , Gs=GE—9)/V2, , Ge=(2—%)/V2. (8.118)

Substitution of n into the equation of motion and integrating as before then gives,

8 z * * %
%2(91 —1) [(AB + B*G? + 30(A% — |m[%)) m — 2t(nng + n2ma) + 6v(nanans + nening)](8.119)
877 x * % * * % * %
874:@4 —1) [(AB + B*Gi + 30(A? — [na|*)) 4 — 2t (505 + mn3) + 6v(mnins + nsnsng))(8.120)

where the equations of motion for ne and 73 are obtained by cyclic permutations on the groups (1,2,3)
and (4,5,6) from Eq. (8.119). Similarly equations for 15 and 7g can be obtained by cyclic permutations
of Eq. (8.120). As with the one and two dimensional cases these equations can be written in the form,

0F3q

n;
=G —1)— (8.121)
ot on;
where
3
| AB 3v 3v
Fza = /dT TAQ + ZA4 + Z {Bxgﬂ?j|2 - 277j|4}
j=1

+6v (mnanins + n2ninsng + nsnangns + C.C.)
=2t (nyn2ma + n3m3n5 + n3mne + C.C.)] (8.122)

In the small deformation and long wavelength limit this reduces to

Faqg =~ / dr [6AB¢2 — 16t¢° + 135v¢* + 8B*|V¢|?

3 4

1

+4B" ¢ U5+§§ UnalUj; | +2) U2 3 67| . (8.123)
i=1 j#i i=1
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This free energy is essentially equivalent to the two dimensional case except for the coefficients. The
three elastic constants for this model are then C1; = 8B%¢?, C12 = Cyy = C11/2 as expected for a BCC
lattice.

8.6.4 Rotational Invariance

While all the equations derived for the amplitudes are rotationally invariant, trouble will arise if two
angles are used to describe the same crystal orientation. For a better understanding of this it is useful
to consider a simple rotation of the two dimensional system as depicted in Fig. (8.17). To describe this

Figure 8.17: Reciprocal lattices vectors for one mode approximation to triangular lattice under rotation.

rotation the amplitudes would be transformed as,
n; — 15 exp(i 6G; - 7), (8.124)

where 0G; = Cj; —G; and ég = (G¥ cos(0) — GY sin(0)) + (G sin(0) + GY cos(0))y. When Eq.(8.124) is
substituted into Eq. (8.115) it is easy to show that all dependence on 6 disappears. As expected the free
energy is invariant under rotation. However there is a problem when two ‘identical crystals’ impinge on
one another. Consider for example a rotation of 7 /6 for the two dimensional reciprocal lattice set which
turns éll — —ég, m — n5 and similarly for other modes. Under the rotation the exact same crystal
structure is represented as for § = 0. However, for § = 0 the amplitudes are constant, while for ¢ = 7/6
the amplitudes are oscillating in space according to Eq. (8.124). If these two crystal come into contact a
domain wall with forms between them since the amplitudes are not constant across the interface. Clearly
a domain wall between two identical crystals is unphysical. Thus when using the amplitude expansions
for the two dimensional case the condition —7/6 < # < 7/6 must be maintained. Similar care must be
taken when considering the three dimensional BCC amplitude equations. Curiously, this limitation is
similar to that encountered in all multi-phase field models where separate scalar order parameters are
associated with each rotation.
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8.7 Parameter fitting

The approximations used in the derivation of PFC from CDFT are extremely crude and lead to a model
that is not a good approximation of classical DFT. From a computational point of view this is a good thing
since CDFT solutions for n are sharply peaked at each lattice sites and may require on the order of ~ 100¢
mesh points (where d is dimension) to resolve. In contrast, solutions of the PFC are much smoother and
require on the order of ~ 10¢ mesh points which leads to a significant computational saving. Unfortunately
the PFC model as derived from CDFT (i.e., Eq. 8.51 with ¢ = 1/2 and v = 1/3) gives poor predictions
for many physical quantities. This leads to an important questions: Can parameters for the PFC model
be chosen such that n is smooth and reasonable predictions are made for key physical quantities such
as the liquid/solid surface energy and anisotropy, liquid and solid elastic moduli, magnitude of volume
expansion upon melting, etc..

At the time of writing this text, the only metallic system that has been studied in some detail is Fe.
The first study was initiated by Wu and Karma [213]. In their study the authors fit the width, height
and position of the first peak in é(k) to predict B, B* and R (although in a different notation) and
the parameters t and v were chosen to match the amplitude (¢) of the density fluctuations of molecular
dynamics studies and to ensure the liquid and solid phases have the same energy at coexistence. This
scheme did quite well to predict the liquid/solid surface energy and anisotropy. Unfortunately predictions
for the elastic moduli, volume expansion upon melting and the isothermal compressibility of the liquid
phase were not very accurate. The main difficulty lies in simultaneously fitting the first peak in Cr and
Co using only three parameters. In a later study Jaatinen et al. [105] added one more parameter to the
PFC free energy so that both the first peak and k = 0 mode of C}, were fit reasonably well. By adding
this one extra parameter the models predictions for the volume expansion of upon melting, the bulk
moduli of liquid and solid phases and as before the liquid/solid surface energy and anisotropy, closely
match experimental numbers. Whether the general procedure outlined in this study will work for other
metals/materials needs to be examined in more detail.

In another study, an examination of the velocity of solidifying front in a colloidal system was examined
by van Teeffeen et al. [198]. In this work the authors fit the peak of Cj with the form A+ B(k? — (k*)?)+
C(k? — (k*)?)? where k* is the peak position of the first peak in Cy and scaled the total free energy by a
constant. The authors found reasonable agreement between for the front velocity and classical dynamic
density functional theory and also examined a dynamical model that is more faithful to dynamical density
functional theory.
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Chapter 9

Phase Field Crystal Modeling of
Binary Alloys

This Chapter extends the ideas discussed in the previous Chapter and develops a PFC model for binary.
As in section (8), the starting point is a classical density functional theory for a two-component mixture.
This formal approach is used to motivate the origins of the alloy PFC model. As in the case of the
pure materials, the formalism serves merely serves as a guide to assure that the correct basic physics is
included in the underlying phenomenology that is subsequently developed. Following the derivation of
the PFC alloy equations, alloy model’s potential in demonstrated in a suite of applications.

9.1 A Two-Component PFC Model For Alloys

The free energy functional for a binary alloy to order Cy can be written as the sum of the free energy
functional for two pure systems plus a coupling term that introduces the direct correlation function
between the two species that make up the alloy. More specifically the free energy functional of an alloy
consisting of A and B atoms to order C5 reads,

F  Fa n FB

kT — kgT = kT
where C4p is the direct two point correlation function between the A and B atoms, F4 and Fg are
the free energy given by Eq. (8.48) and the +--- represent higher order A/B correlations. To make a

connection with conventional phase field models of binary alloys (i.e., Models A, B, C ,....) it is useful to
introduce a total density field, and concentration

/dF1dF25pA(F1)CAB(F1,Fg)épB(Fz) =+ (9.1)

p=patps 5 c=pa/p (9.2)
such that p4 = cp and pp = p(1 — ¢). The free energy given in Eq. (9.1) can now be written in terms of
pand ¢, i.e.,

‘F’/
kT

= /df’[plnpﬁ —dp— g (CQCAA + (1 —¢)?CBB 4+ 2¢(1 - C)CAB) p+pl(l—c)ln(l —c)+cln]
!
foc ((CAA _ CAB) pia+ (CAB _ C’BB) o +In Zij) } (9.3)
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where a new notation, C!”/ (I,J = A, B), has been introduced. In this notation, C!7 is an operator that
acts on the function immediately to its right. For example, C”p is written explicitly as

clp= / Crs(|7— 7)) p(7) (9.4)

In Eq. (9.3) p1 = pia + ;s and pa, pip are the densities of the A and B atoms respectively in a
reference liquid state and as in the pure case the series has been truncated at C5. In addition a constant
(A= [dip(n(pi/pis) +CBBpip + CAB ppa(1—pip)) — (CBBpty +CA4p2,)/2) has been subtracted such
that 7/ = F — kgTA

Before developing a simple model for simulating binary systems with elasticity, plasticity etc., it is
instructive to consider two simple cases, one in which the density is constant (i.e., a liquid with p = p;)
and the other in which the concentration is constant in the solid phase. While these are obviously not
the most general cases they are offer some physical insight into the expansion.

9.1.1 Constant density approximation: liquid

Consider a liquid in which the density is approximately constant, i.e., p = p; (although setting p = p; is
just for convenience it could be set to any constant density). In this case the interesting part of the free
energy functional reduces to;

F' Pl pp 1
~ [ di|[(1-¢)n(l— Inc] — =ACS* + (In— — = - AC ) dc| (9.5
o~ [ar[0-oma -0 emd - Facse + (w2 - L g AC) | (03
where dc = ¢ —1/2,

AC = CA% 1 0BB 2048, (9.6)
and all terms not containing ¢ or dc were dropped for simplicity. Next the direct correlation functions
are expanded in the usual fashion in fourier space, i.e., Cyg = — 64’4 + C$ k% + - - or more explicitly
for AC,

AC = —-ACy— ACLE? + - --. (9.7)

Note that in the above expansion is was explicitly assumed that 2C'QAB > C’fm + C'QB B As will be seen
this assumption is explicitly needed to ensure the gradient energy coefficient is positive. Substituting
these expressions for AC and expanding to order éc* gives,

o,
kTp

where AF" = F'(dc) — F'(0), v = In(pip/p1a) + AC‘O(plA —pB)/2, w =4+ mACy and K = p AC,.
Equation (9.8) is the standard Cahn-Hilliard model (or Model B) of phase segregation, where the pa-
rameters that enter that model can be identified in terms of the liquid state correlation functions. More
specifically the parameter that enters the quadratic term (w) are the inverse isothermal compressibilities
of the liquids not “interaction” potentials as normally identified. An interesting feature of this free energy
is that the gradient energy coefficient can be negative. If this was the case higher order terms in the
direct correlation functions would be required and may lead to sublattice ordering.

5 16 6c |Vdc|?
’7(50 +w 7 + ?T + K B)

(9.8)
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9.1.2 Constant concentration approximation: solid
If the concentration is constant then the model simplifies to the form,

AF . V[ om e ce
T = /dr {plnppl 5,0} - g/dmdm@ dp1dp2 (9.9)

where all terms linear in p have been included in AF and the effective direct two point correlation function
is given by
C® = c2CM + (1 —¢)2CPB 4 2¢(1 — ¢)CAB. (9.10)

This free energy is identical to the free energy of a pure system (i.e., Eq. (8.48)) to order Cy. Thus
prediction made in earlier chapters for elastic, lattice and diffusion constants, can be immediately extended
to include concentration, i.e., the concentration dependence of these constants can now be predicted.
For example for a BCC lattice the equilibrium wavevector was ¢eq = 1/ V2 in dimensionless units, or
Geq = 1/v/2R which implies a lattice constant of ey = 27/¢eq = 2v/2 7R, where R = (2C4/C)"/?. The

implication is that,
teq(c) = 2V2m ([ 2C¢ ) CS (9.11)

where C° has been expanded in fourier space as was before, i.e.,
Ce=—-C5+Csk? —C5kt + - (9.12)

where C’fl = 02@‘;“4 +(1- 0)207‘?3 +c(1— C)C’,‘?B. This implies the concentration dependence of the
lattice constant can be written,

2CA 4+ (1 —¢)2CBB 4 2¢(1 — ¢)C2B
Qeq(C) = 4w 5 A‘;A 5 A‘;B ”1143' (9.13)
2054 4+ (1 —¢)2C58% 4+ 2¢(1 — ¢)C
Expanding expanding around ¢ = 1/2 gives,
Geq(0€) = aeq(0)(1 +ndc+---) (9.14)

where 7 is the solute expansion coeflicient given by

n = % (504 - 5?2) : (9.15)

64 ég
where
C = (CA 4+ OPB 4 2048)/4
oC = A _(oBB (9.16)

such that C,, = (CAA 4 CBB 4 2CAB) /4 and 6C,, = CAA — CBB . Similar calculations can be made for
the elastic constants.
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9.2 Simplification of Binary Model

In the preceding two sections some properties of a binary CDFT model (to order C3) were examined in
two specific limits. In the limit of constant density it was shown that the model naturally includes phase
segregation, while in the limit of constant concentration it was shown that the model naturally includes
the concentration dependence of the lattice and elastic constants and the liquid/solid phase transition. In
this section a simplified binary PFC model that incorporates all these features (in addition to elasticity,
plasticity, multiple crystal orientations) is presented. Similar to the simple PFC model of a pure system,
the goal is to develop the simplest possible model that includes the correct physical features, not to
reproduce CDFT .

The first step in the calculation is to expand the free energy given in Eq. 9.3 and around ¢ = 2¢ — 1
and n = (p—p)/pi). To further simplify the calculations it will be assumed that terms of order n! can
be neglected since the average value of n (i.e. its integral over space) is zero. Additionally n is assumed
to vary in space much more rapidly than c. In this limit the expansion to order ¢* and n* of Eq. (9.3)

becomes,
6C 1 1
1_ R - _ . 4
kBTPz /dr[ ( ) (C+ ¢+ 1/J )) 6n + 33"

+<IHIZZ—;(P1A—MB)AC) w ;p (1—P1AC>¢+ v } (9.17)

where AF = F(y,n) — F(0,0).

The next step is to expand the correlation functions (i.e., C', AC and §C) in fourier space up to order
k*, as was done for the pure material (see Eq. (8.50)). After some straightforward but tedious algebra,
this reduces AF to

AF
ksTp

B! t K -
- /df' [2712 n B”’%(ZRQVQ + RV — on® 4 %14 o+ %W n %w‘* n 2V¢|2}(9.18)

where t =1/2, v =1/3 and

w = 1+plAC’0/4
v = In(ps/pia)/2+ ACo(pia — pip)/4
K = plAég/él
B' = 14 pCo+6Co1h/2+ ACY?/4
22 a2 N
C C oC oC
B* = pl22:pla2 (1_<A2 4>1/} O(w) >EB§+B%’¢}+B§¢2+
Cy Cy Cs 204
oC oC
R = <1+ <c2 04)¢/2+c9( )2+ .):RO+31¢+RQ¢2+-<-9.19)
2 4

Equation (9.18) is a relatively simple model that can be used to simulate solidification, phase segregation
and elasticity /plasticity. In the next several section some basic properties of this model will be discussed.
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9.2.1 Equilibrium Properties: Two dimensions

To determine the equilibrium properties of the model in Eq. (9.18), specific choices for various parameters
must be made. For simplicity the ¢ dependence of B’ and B* will be given as B* = Bf + Biy?,
B* = Bf and v will be set to zero. With these choices the phase diagram is symmetric about ¢ = 0.
In addition it will be assumed that the parameter K is “large” such that the concentration field (v)
varies on ’slow’ scales compared with n. With these simplifications n can be integrated out of the free
energy by in a one mode approximation. Substituting the standard one mode approximation for n (i.e,
Blcos(2qy/+/3) /2 — cos(qz) cos(qy/v/3)] for 2D HCP) into Eq. (9.18), integrating over one unit cell and
minimizing the resulting expression with respect to ¢ and g gives,

i = V3/(2R) (9.20)

Oeri(P) =4 (t + \/t2 — 15v(ABy + Bgz/ﬂ)) /(15v) (9.21)
where AB = BY — B* and ABy = B§ — BE. The free energy per unit area (azq) is then
AFxtal _ W o, U .4 3 2 t 3 450 4
- = =z —AB®?.. — — 3 —— .. 9.22
kBTplagq 21/) + 4¢ + 16 (btrz 16 ¢t7‘z + 512 ¢tr1 ( )

Equation (9.22) is now only a function of ¢ and can be used to construct the phase diagram as a function
of ¢ (i.e., concentration) and AB (i.e., temperature). To simplify calculations it is useful to expand Fxa
to lowest order in ¥, i.e.,

Afxall) 25l L Satet ) v+ § (u
8 " 4

6(B3)*¢ri(0) P
kBTpl(lgq kBTplagq 2

 15064(0) — 4t

b
Fy+ 5w + 4+ (9.23)

where Fj, a and b are defined by matching the two equations.

If the coefficient of 1%, (i.e., b) in Eq. (9.23) is negative then higher order terms in the expansion must
be included so that the solution does not diverge. In what follows it is assumed that b is positive. If the
coefficient of 42, (i.e., a), is positive then a single phase homogeneous state emerges. If a is negative then
a two phase heterogeneous state emerges with coexisting concentrations (obtained by solving minimizing

AFxiqr With respect to 1),
wcocm == |a|/b (924)

The critical temperature (or critical AB§) separating the single phase and two-phase region is be obtained
by setting ¥coer = 0 and solving for ABy. This calculation gives,

. 15wv — 2t\/—6B5w
AB§ = 6B 2 (9.25)

Liquid/solid coexistence also requires the free energy density of the ligid. This can be calculated by
assuming that the liquid state is defined by n = ng, which for simplicity will be assumed to be zero. In
this limit the free energy per unit area of the liquid state is,

AFLiquia(¥)

w2, U 4
=—= - 9.26
kBTplagq 21/} + 41/) ( )
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While an exact calculation of the coexistence lines is difficult, to a good approximation the lines can
be obtained by first determining the concentration (v;5) at which the free energies of the liquid and
solid are equal and then expanding about Fjiquiq and Fxiq around s to order (¢ — 15)?. Using this
simple approximation for the liquid and crystal free energies allows for an exact solution of the common
tangent construction (or, Maxwell’s equal area construction) to obtain the liquid/crystal coexistence lines.
Specifically, setting Eq. (9.26) equal to Eq. (9.22) and solving for ¢ gives the value of ¢ (denoted v;5) at
which the liquid and solid have the same energy per unit area gives,

ABl* — AB
2 _ 0 0
Vis = Bl (9.27)
where ABL® is the lowest value of ABy at with a liquid can coexist with a solid and is given by
8t?
Bl = 2
0 7 1350 (9.28)
Next, the liquid and solid free energies are expanded about leS to second order, i.e.,
F' = Fi+ F{ (¥ — ¢1s) + F3(¢ — ¢15)%/2 (9.29)
and
F* = F§ + F{ (Y — is) + F5 (¥ — 415)?/2 (9.30)
These equations give the following chemical potentials for each phase,
pl = F{ + Fy(¢ — i) (9.31)
and
pe = FY + F5 (¢ — ). (9.32)

If the equilibrium chemical potential is denoted 5, then the liquid (¢;) and solid (1s) concentrations
can be expressed as

1/’1 = wls‘i’(,ufls*Fll)/FQl
ws = wls + (}uls - Fls)/FZS (933)
Maxwell’s equal area construction rule can be used to calculate u;s according to
"L’ls 'l,bs
/ dw (,ul - Mls) + dw (MS - Mls) =0. (934)
wl "L’ls
Solving the above expression for ;s thus gives,
FYF} — FIF5 + (F{ - FY )/ FyF3
s = ; . (9.35)
Fy — F;

Thus if (F}, F}, F§, F5) are known then p is known and in turn v; and v, are known from Eq. (9.33).
Straightforward expansions of the liquid and solid free energy functionals around ¥ = ;s gives,
l 3 l 2 ] 4Bé l s 4Bé ls l
F) = wips +wdy,, Fy =w+ 3uyy,, FY = 5TABlsz/}ls + F, F5 = 5—@(4ABO —3ABy) + F5. (9.36)
Equation (9.33) can now be used to construct the liquid/solid part of the phase diagram. A sample phase
diagram as shown in Fig. (9.1) ®.

INote that the parameter w = —0.04 reported in the corresponding figure in Ref. [62] is a typo.
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Figure 9.1: Phase diagrams in two (a,b) and three (c,d) dimensions. In all figures the parameters are
t=06,v=1u=4, B* = Bf—1.8¢? (ie., B{ =0, B§ = —1.8), B® = 1. The parameter w is 0.088 in
(a) and (c) and 0.008 in (b) and (d). The solid lines are exact one-mode solutions and the dashed lines
are approximate solutions as described by Equs. (9.24) and (9.33).

9.2.2 Equilibrium Properties: Three dimensions (BCC)

The calculations presented in previous section can easily be extended to a three dimensional BCC crystal
structure. For these calculations a one mode approximation for n is,

n = ¢ (cos(qx) cos(qy) + cos(qy) cos(qz) + cos(qz) cos(qx))) . (9.37)

Substituting this one mode BCC approximation for n into the free energy, averaging over one unit cell
and minimizing with respect to ¢ and ¢ gives,

and
Bpec (V) = 4 (Zt + \/4t2 — 45v(ABy + Bﬁwz)) /(450). (9.39)
The free energy per unit volume (a?,) is then
Fxtal W o U 4 3 2 t 3 135v 4
— = - ~AB¢p,. — — — 9.40
kBTPlaf;’q 2¢ + 47/} + ) ¢bcc 4¢bcc + 256 d)bcc ( )

Expanding Fxtq as before gives,

A]:Xtal(ql)) A]:Xtal(o) 1 3 /.9 9
=Y Atal\¥) . =Y Xtal\Y) 1 °p
k‘BTplClzq kBTplagq + 2 W+ 4 2¢bcc(0) ¢ +

! (am 00

45U¢bcc(0) — 8t
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b
= Fy+ gw + gt (9.41)

For positive a the equilibrium state is homogeneous, while for negative a a two phase heterogeneous state
emerges with coexisting concentrations again at ¥coe = £+/|a|/b. The critical temperature (or critical
AB§) can be obtained by setting ¥coe, = 0 and solving for ABy. This calculation gives,

. 4bwv — 8t\/—3Bw
AB§ = 1251 (9.42)

Setting Eq. (9.40) equal to Eq. (9.26) and solving for 1 gives the value of ¢ (1;5) at which the liquid
and solid have the same energy per unit area. This occurs when

ABY — AB,

2
= 9.43
1/}ls Bg ( )
where ABY is the lowest value of ABy at with a liquid can coexist with a solid and is given by
32t
ABf = 9.44
0 7 4050 (9.44)

Proceeding precisely as in the two dimensional case and expanding of the liquid and solid free energy
functionals around v = ;5 gives

8B,

8B}
15v

¢l.9+F1l7 FQSZ 150

FL = wipys +wd,, Fl=w+ 3uwd, F& = (4ABy — BABE) + Fy

(9.45)
The same steps as in the two dimensional case can be used once more to calculate the phase diagram.

Sample phase diagram are given in Fig. (9.1).

9.3 PFC Alloy Dynamics

As with the phase field crystal model of a pure system it is assumed that the dynamics is driven to
minimize the free energy, i.e.,

opa & = OF

oo 9 () e

8,03 =3 - OF

L5~ V. (MpV— A
ot \Y ( BV5PB>+CB (9.46)

where M4 and Mp are the mobilities of each atomic species, which in general depend on density.
The variables (4 and (g are conserved Gaussianlly correlated noise due to thermal fluctuations of
species A and B respectively and satisfy the fluctuation dissipation theorem, i.e., < ;(7,t);(7,t) >=
—2kpTM;V25(7 — 7)6(t — t')d;

A useful approximation that can be made to Eqgs. (9.46) is to assumed that the concentration field 1
can be approximated as follows,

Y =2c—1=2pa/p=(pa—pB)/p=(pa—pB)/lp(n+1)] = (pa—pr)/p. (9.47)

184



This assumptions leads to the following equation of motion for n and ),

9 = O0F = 0F

6772 - V- M1V6—+V M2V@+(CA+CB)/P1

o - 0F = 0F

8%& - V. Mgvd— +V-MV 5 +(Ca —CB)/p1 (9.48)

where My = (Ma + Mg)/p? and My = (M4 — Mg)/p?. The derivation of Eqgs. (9.48) will not shown
here. The reader is referred to Ref. [62].

Applying the relevant functional derivatives to Egs. (9.48) gives the following equations of motion for
the fields n and v,

(;i = B'n+ % (2R*V? + R'V*) n+ V*(B*R’n) + %V4(BwR4n) — tn? + vn?
n
6F oB*n?> O(B*R?) _, 10(B*RY) _, 3 9
_ n” 29b ) KV, 4
50 8w2+ a0 nVn+2 90 nVin + wy + up Ve (9.49)

Two representative simulations of Eqs. (9.49) using M4 = Mp, B* = BZ + BSy?, B® = Bf and R =
Ry + R1¢ are shown in Fig. (9.2). The figure on the left illustrates the flexibility of the approach
to simultaneously model liquid/solid transitions, phase segregation, grain boundaries, multiple crystal
orientations and different size atoms in a single simulation. The figure on the right illustrate that the
model can reproduce known structures such as dendrites and eutectic crystals resolved down to the atomic
scale.

In instances when the mobilities are equal and the difference in atomic size is modest a slightly simpler
version of this model can be used. Using, once again, the parameterization B = B + BSy?, B* = B
and R = Ry + R1%, and taking the limit of small solute in these parameters, leads to,

%ZL = MV?(B'n+ B*An+2nB* (yBn + Byn) — tn? + vn?)
a@—f = MV?(2B"nnBn+ (w+ Bsn®) + uwy® — KV2y)

(9.50)

where A = 2V2+V* and B = V24 V*. This version is a little more convenient for numerical simulations.

The alloy PFC model of Egs. (9.48) can be explored numerically using a Fortran 90 code that ac-
companies this book in the directory “PFC_alloy” in CD that accompanies this book. The algorithm
very closely follows the approach of the model C codes studies in connection with solidication of pure
materials and alloys in previous chapters and will not be explicitly discussed here

9.4 Applications of PFC models

The PFC models studied in this book can be applied to a many different physical phenomena in which
elasticity, plasticity and multiple crystal orientations play a role. In this section some of the applications
that can be address by this modeling paradigm are briefly outlined. For more details of implementation,
the reader is referred to the original publications for the details.
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Figure 9.2: Eutectic and Dendritic solidification phenomena. In the figure on the left the grey scale
represents p in the top row, ¥ in the middle row and the smoothed local free energy density in the bottom
row. The left, middle and right columns corresponds to times ¢/7p = 106,260 and 801 respectively. In
figs. (a,d,g) only a portion of the simulation cell is shown corresponding to the region enclosed by the
white squares shown in the other figures. In the figure on the right the top illustrates the 1 for a eutectic
crystal grown from a supercooled liquid and in the bottom figure a dendrite is grown from a supercooled
liquid. In the top right of each figure a small portion of the structures is blown up to show the atomistic
resolution of the simulations.

A natural area for exploration using the PFC model is grain boundaries since the model can describe
crystals of arbitrary orientations and the dislocations that comprise the boundaries. Initial PFC studies
of the energy of such boundaries [67, 66] confirmed the well know Read-Shockley equation [180] for low
angle grain boundaries and were consistent with experiments for large angle boundaries. These results
were reconfirmed in other studies of the PFC model [153] and of the amplitude representation [78]. Other
work focussed on premelting of grain boundaries [24, 153] in which regions close to grain boundaries
or even single dislocations were shown to melt before the bulk melting temperature is reached. It would
be interesting to use the binary PFC model to such solute trapping and drag at grain boundaries and
surface, although no studies have been published to date.

One of the applications that motivated the development of the PFC model was epitaxial growth,
or the growth of a thin film on a substrate with a similar but different crystal structure. The mismatch
of the film/substrate lattice structures gives rise to the growth of strained coherent films, which often
undergo morphological changes to reduce the strain. Common mechanisms for strain relaxation are
surface buckling or mound formation (i.e., an Asaro-Tiller, Grinfeld instability) or the nucleation of
defects within the film. Several studies have been conducted to study these mechanisms using both pure
and binary models and even amplitude expansions [61, 60, 66, 62, 98, 214, 99].
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In other contexts the interaction of substrates (or surfaces) with films or single layers can be easily
modeled by the PFC model as shown in number of studies by Achim et al. [4, 178, 6]. In these studies a
two dimensional substrate was modeled by incorporating an effective surface potential into the PFC free
energy. By implementing a surface potential with for example square symmetry the model can be used
to study commensurate/incommensurate transitions as a function of interaction strength between
the surface layer and substrate. In addition when a driving force is added the model can model pinning
and sliding friction of single layers [5, 179].

The PFC models ability to incorporate elastic and plastic deformations makes it useful for the study of
the material hardness of polycrystalline (or nano-crystalline) materials. An initial study [25] of single
dislocations reveal the existence of Peierls barriers and show that climb and glide follow viscous equations
such that the effective mobility for glide is an order of magnitude faster than climb. Other studies of
the deformation of polycrystalline material have been conducted using the basic PFC model [67, 66], the
modified PFC model [188] and with a novel numerical algorithms for modeling compression and tension
[91]. These studies have been able to reproduce the reverse Hall-Petch effect in which the yield strength
increases as a function of grain size as observed in experiments on nano-crystalline materials [218].
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Appendix A

Thin-Interface Limit of a Binary
Alloy Phase Field Model

This appendix derives the thin interface limit of the "model C” type phase field models, comprising one
order parameter equation coupled to one diffusion equation. This notation is based on the alloy model
discussed in Chapter (6), altough it is adaptable to that model C describing solidificaiton of a pure
material also, as studied in Chapter (5).

The following analysis derives the behavior of a generalized alloy phase field model in the limit when
the interface width Wy, is formally smaller than the capillary length d,. Solutions are expanded to second
order accuracy in the small parameter ¢ = Wy/d,. The effective sharp interface relations derived in
the analysis still hold for diffuse interfaces (i.e. for W, ~ d,) so long as the thermodynamic driving
force that drives microsstructure formation is small. The analysis treats an isotropic interface energy for
simplicity. Because it is performed in interface local coordinates, the results of the isotropic case carry
over essentially unchanged to anisotropic case. The calculations of this appendix follow the standard
matched asymptotic analysis methods [158] and genralize the approach first developed by Almgren [8]
and later extended by Karma and co workers [113, 112, 57] to the case of a generalized alloy free energy
and to two-sided diffusion.

Readers wishing only a summary of the results of part (1) discussed above should become familiar
with section (A.1), which defines the form of phase field models being studied, and jump to section (A.8),
which summarizes the main results of the main asymptotic analysis, covered in sections (A.2)-(A.7).
Section (A.9) covers part (2) discussed above.

A.1 Phase Field Model

The alloy free energy considered here considers one order parameter (or phase field) ¢, an impurity
concentration ¢ and a temperature 7', considered isothermal at present. The paradigm alloy phase field
model free energy considered is of the form

2 2
F:/ {eczcl +|e¢z¢| +wg(¢)+fgléX(¢,c,T)}dv (A1)
\4
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where €, = \/EW(;) and e, = \JwW, are constants that set the scale of the solid-liquid interface and
compositional domain interface energy, respectively. Their units are [J /m]l/ 2, The constant w is the
nucleation barrier between the solid and liquid phase of component A, and has units of [J/m3]. The
constants Wy and W, thus set the length scale of the solid-liquid interface and a compositional boundary.
The inverse of w is also defined herein by w = 1/A. The function g(¢) is the double-well potential, which
models the solid-liquid free energy of the component A at its melting temperature T},,. It has two minima
for ¢s and ¢y, corresponding to the order parameters for the solid and liquid phases, respectively, and a

barrier between the two phases . The function fg“é"(cé, ¢, T) is the bulk free energy of mixing of the alloy,
and determined the phase diagram of the alloy.

Equations of motion for the fields ¢ and ¢ are given by

9 _  OF o ocn, dg  Ofam
o T o0 VeVl 4 Tae
oc
L (42)
_ OF _OfEE oo
= % ™ o Ve
where the definition
fas = fAB/w (A.3)

has been made, while 7 = 1/(wM) controls the time of attachment of atoms to the solid interface from
the liquid, governed by the atomic mobility M. The solute mobility function M (¢, ¢) is given by

M(¢7 C) = DLq(¢7 C)
82 Fmix

a(6,0) = Q(8)/ —3 5" (A4)

where the function Q(¢) is an interpolation function whose that is to be used to interpolate the diffusion
through the solid-liquid interface. Its has limits Q(¢ — ¢r) = 1 and Q(¢ — ¢s) = Ds/Dy, where D,
is the solid phase impurity diffusion constant. For example, for the regular solution model of a binary
alloy, 9% fRix /0c? = 0Pk /9c = (RT,/v,)/c(1 — ¢), where v,, R and T, are the molar volume of the
material, the natural gas constant and the melting point of A, respectively. Through Eq. (A.4) the solute
mobility in the liquid phase is identified as

My =Drq(¢ =dr,c=c;") =D/ <%Z> . (A.5)

A.2 Curvi-linear Coordinate Transformations

The phase field equations are considered here with respect to a set of curvi-linear co-ordinates, denoted
(u, s) and illustrated in Fig. (A.1). In this coordinate system, distances are measured with respect to a
curvilinear co-ordinate system which is anchored to a position along the solid-liquid interface, where the
interface is defined by the locus of points satisfying
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where ¢. is a constant !. The co-ordinate u in this system measures the distance from the interface to
a point (z,y), along a line normal to the interface. The co-ordinate s measures the arclength from a
reference position on the interface to the position on the interface coinciding with the normal direction
along which u is measured.

interface
s F—s
i

X

Figure A.1: Schematic of the (u,s) co-ordinates relative to an orthogonal co-ordinate system anchored
onto the interface. The co-ordnate u measures distances normal to the interface while s measure the
arclength long the interface. The vector ¥ denotes the velocity of the interface at the point indicated by
the dot, which is situated at co-ordinates (0, s). See also Fig. (C.1) for further details.

Transforming to a co-ordinate system moving with a velocity ¢’ transforms the time derivative accord-
ing to

— = ——v-V (A7)

where ¥ is the velocity vector at the reference point on the interface. As shown in section (C.2), in the
(u, ) co-ordinaes Eq. (A.7) becomes

0 0 . . . .

ot o (wn s ("m+ma ot e o,
where —u, (= v,,) and —s (= v;) define the components of ¢ projected onto the normal 7 and transverse
(s) directions, respectively, and « is the local interface curvature at the point (0, s) on the interface. (It
is noted that the notation ” f ,” will often be used to denote partial differentiation of a function f with
respect to x). The (1 4+ ux) term in the second equality was dropped as it it will be seen later to be of
lower order than required in this analysis. 2

The V and V? operators are similarly be transformed into (u, s) co-ordinates. Applying Eq. (C.15)

derived in section (C.2), it is found —after some algebrea— that the Laplacian operator (V?) becomes,

0 1 8) 0 0 0 (AS)

AVEREN 872 + K E 4 1 872 _ w %ﬁ
Pu (I+uk)du  (I1+uk)?29s® (14 uk)? 0s 0s

(A.9)

11t should be noted the location of the interface defined trough ¢(x,v), typically found in many papers, is not unique.
The most consistent choice of ¢. is that which defines the Gibb’s dividing surface. In this calculation ¢. = 0 will be chosen
such that a 1D solution of the ¢ field is even about the interface position.

2This will become clearer in section (A.6). When the re-scaled phase field equations are expanded in a small parameter
¢ (defined below) time derivatives become of order €2, while the expression (1 + uk)~! ~ 14 O(e) (e.g. see Eqgs. (A.36)),
making any contribution from the uk term of order €3, which is not being considered here.
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while the ”sandwiched” V operator V - (¢V), arising from the diffusion equation, becomes
0 0 qrK 0 1 0 0 uqg Ok 0
. — | g=— — — = )| - ——————— A.10
V-@V) =3, (qau) T U un) de T Tt un)? 05 (q35> (1 + ur)? 95 0s (A4.10)

A.3 Length and Time Scales

As discussed in the text, matched asymptotic analysis is a multiple scales analysis that matches solutions
of the phase field equations at distances much smaller than the interface width to those far outside the
interface. Before proceeding, it is instructive to define some useful expressions and the characteristic
length and time scales that will be used to non-dimenionalise the phase field equations in the follwoing
analysis.

The ”inner region” of the phase field model is defined by the length scale Wy, the interface width.
The ”outer region” of the model is defined by scales much larger than that of the capillary length d,. In
terms of phase field parameters, the capillary length d, will turn out to scale with the interface width
W, and the nucleation barrier 1/A. It is thus expressed as

We

d
° al

(A.11)

where « is a constant that will be determined later in the analysis 3.

The asymptotic analysis will be done by solving the field equations order by order (to second order)
in the small variable defined by e = Wyv, /D, < 1, where v; is a characteristic velocity. In this analysis
vs = Dp/d,, which characterizes the speed with which atoms diffuse across the solid-liquid interface,
whose scale is set by d, [57]. These definitions imply that e = W, /d,. It will also be assumed that the
interface width is small compared to the local interface curvature of the interface. Specifically, in most
practical situations the radius of curvature of the interface R ~ 1/k is much larger than the capillary
length d,. This is leads to the condition Wy < 1. Finally, the characteristic time scale with which time
in the model will be re-scaled, both in inner and outer domain is t. = Dy, /v2. To summarize,

inner region : x << Wy

outer region: x > Dp/vs=d,

characteristic time : t, = DL/vf =d,/vs
expansion parameter : € = Wyvs/Dp =Wy/d, < 1
curvature : Wy k5 ~ € (A.12)

From the definitions in Egs. (A.12), the free energy of mixing fap can be re-scaled according to

fap = AB = AB —of (A.13)
w «
where the definition o
f(¢,¢) = faE (¢, 0)/c (A.14)

31t will be determined by comparing the effective phase field capillary length, which is derived from the final result in
Eq. (A.130) with Eq. (A.11). For example, for a binary alloy, Eq. (6.73) and shows that o o« RT/S?, where here Q is the
molar volume of the material.
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in the last equality has been made for convenience of notation in the algebra that follows.

It should be noted that while the analysis presented herein is in the small parameter e = Wy /d,, the
results derived will be valid so long as ef < 1. This implies that Wy can be of order d, so long as the
thermodynamic driving force f is small or if the microstrcuture growth rates are small. This is motivated
empirically by noting, through Eq. (A.13), that the coupling of the ¢ and ¢ dissapears when ¢ — 0,
i.e. the classical sharp interface limit, or when |f| — 0. The latter situation corresponds to very small
interface velocities, v,,. Examination of the final results of this analysis, summaried in section (A.8),
show that the v, — 0 limit leads, to lowest order, to essentially the same effective sharp interface model
as the W, /d, — 0 limit (subject always to the Eq. (A.11) and the condition Wyr < 1).

A.4 Matching Conditions Between Outer and Inner Solutions

After solving the phase field equations in the inner and outer regions, their respective solutions will be
matched in the intermediate region. This processes will make it possible to extract the Gibb’s-Thomson
and flux conservation equations acting at an effective solid-liquid interface of the corresponding phase
phase field model. The solutions in the outer regions are denoted by ¢° while in the inner region they are
denoted by ¢°. It will be assumed that the solutions of the outer region can be expressed in an asymptotic
series as

¢ = $hted] Pt
& = cftec)+e*S A+
pe = pgteuf+eug+ - (A.15)
and while the solution in inner region are given by
P" = o el + P+
o= el e+
p= g e ey 4
Un = Upo—+ €Up1 + €Una + - - - (A.16)

where v,, is the normal velocity, which will play an important role when analyzing the inner behaviour
of the phase field equations.

The inner and outer solutions are matched by comparing the inner solutions in the limit of & =
u/Wy — oo with the outer solutions in the limit in the limit = u/(Dr/vs) — 0 [8] . This leads to the
following matching conditions.

For the concentration field c:

Jim i) = Tim cion) = 0°)

dim e = (oo + 2E0) o + 2
For the chemical potential p:

Jim g (€)= lim, () = pg(0%)
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: in _ : o 8”8(77) __ ,o/nt 8”8(0:‘:)
i ©) =t (o) + 280e) — o) + 26N
oy (&) _ . (Ouf(m) | OPug(n) \ _ 9ug(0F) | 9Pug(0%)
¢rtoo ¢ B nligli on * on? ¢)= on + on? ¢ (A-18)
For the phase field ¢:
Jim d8©) = 6= lim 630
lim ¢¢'(€) = ér= lim ¢f(n)
£—o00 n—0
Jim gr©) = 0.9j=123
$on) = 0,¥j=1,23, - (A.19)

where ¢ and ¢y denote the steady state order parameter of the bulk solid and liquid. These are
determined by the specific form of the free energy. The simplest free energies to work with are such that
bulk phae field values are uniform constants.

Velocity is dependent only of the arclength s and does not require matching in the transverse co-
ordinate.

A.5 Outer Equations Satisfied by Phase Field Model

To examine the phase field equations Egs. (A.2) in the outer region, the following re-scaling of space and
time are made: 1 = vsu/Dy, § = vss/Dy, and t = t/(Dyr/v?). This leads to the following dimensionless
version of Eqs. (A.2),

) dg  9f

> _ 292, %9 OF
De 5% = € \Y a0 €8¢ (A.20)
o~ V{46, (A.21)

where D = D7/ qu and V denotes gradients with respect to dimensionless length scales.

The next step is to substitute Egs. (A.15) into Eqgs. (A.20) and (A.21) and expand all non-linear terms
up order €2. This is referred to a ”second order expansion” in e. Expanding first the phase field equation
Eq. (A.20) to second order gives

_ 5092 _
D = 9% - g (4)
— e (Loldh, ) + 9" (60)09)
= (L0086, )65 + Loe(93, RV + 9" (60)85 +97 (98 (99)%/2) — -+ (A.22)

To make the notation compact, ordinary derivatives with respect to the order parameter are denoted by
primes, while mixed partial derivatives are denoted with commas. Thus f 4. denotes partial differentiation
of f with respect to ¢, then ¢. The idea behind matched asymptotic analysis is to separate Eq. (A.22)
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into a series of separate equations, each of which is contains terms of the same order in e. In this case
the equations at each order are given by

O(1): ¢'(¢5) =0 (A.23)
Oe) : f5(d5,¢8) +9 (65)05 =0 (A.24)

— 8 2 — ” 1"
(@) : DIE 5268+ (F00(65, 6005 + Fe(6 )5 +9 (63)5 + 5 (67) (63)7/2) = 0(A.25)

The solutions of Eq. (A.23) define the minima of the double well potential function g(¢), which denote
the equilibrium values of the order parameter in the liquid (¢ = ¢s) and the solid (¢§ = ¢r). These
values must remain constant in the solid and liquid far from the interface since no solidification takes
place there. The bulk free energy of mixing is constructed such that the order parameter does not change
far away from the interface where no phase change is occurring, regardless of the concentration. This
requirement is expressed as f4(0f = {¢s, 00}, c§) = 0, which implies that ¢¢ = 0 in Eq. (A.24). It
is similarly required that the far field chemical potential be at an extremum with respect to the order
parameter, i.e. f (0§ = {ds, 0L}, ¢q) = freo(dg = {0s, oL}, c§) = 0. This leads to ¢§ =0 in Eq. (A.25).
To summarize, the stated constraints on f(¢, ¢) lead to:

¢y = br,bsn— £oo (A.26)
p7 = 0 (A.27)
9 = 0 (A.28)

The solutions ¢, and ¢, will be matched below to the inner solutions of the phase field equation.
Expanding the concentration equation Eq. (A.21) to second order gives the same diffusion equation

to all orders in €, namely,
ocg

=2 = V- {al6t, 5 Vi) (A.29)

Putting this back in dimensional units (using the scaling for ¢ and n given at the beginning of this
subsection) and using the fact that Q(¢f = ¢r) = 1 and Q(¢§ = ¢s) = Ds/Dy, gives

ocg )
En =V-{ML7SV,u;’}, Vj=0,12--- (A.30)
i.e. the usual Fick’s law of diffusion in either phase. To summarize, the outer solutions of the phase field
Eqgs. (A.2) describe standard solute diffusion in the bulk solid and liquid phases and reduce to a constant
order parameter far from the interface in either phase.

A.6 Inner Expansion of Phase Field Equations

To perform the inner expansion of Eqgs. (A.2), it is instructive to transform these into the curvilinear
co-ordinates defied in section (A.2). Substituting Egs. (A.8), (A.9) and (A.10) into Eqs. (A.2) gives,
oo} oo P 5 (029 Kk 0¢ 1 0%¢ uks 0@
0 0,22 16,22 = w2 (22 79 ge s 99 )3
’ (815 "oy T 0s P \ou? " (14uk)du  (14+uk)2ds® (14 uk)d ds ( )
dg0) _ df(6.0)

dé dé
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To examine the phase field equations Egs. (A.31) and (A.32) in the inner region, the following re-
scaling of scape and time are made: £ = u/Wy, t = t/(Dy,/v?). Distance along the arclength is re-scaled
according to o = s/(Dy,/vs), since variations along the interface should be more gradual than through
the model interface. The dimensionless normal velocity is likewise defined by v,, = v,,/vs. These scalings
lead to the following relations between some of the other variables which will be used often below in going
through the derivations:

(A.32)

s = Yo,
€
00 e
S o
uk = €&k
’LLIQS% = u%; WZEHU% (A.33)

where & is the dimensionless curvature. Using Eqgs. (A.33) to re-scale variables in Egs. (A.31) and (A.32)
gives (retaining terms only to second order in €),

5200 506 . 06 (P60 ek 0 e
by e+ Doy = (5 g o * o) .
 dele) df(6.0)
do do
280 Oc dc  Odc ( Ou €gk Op €2 0 ([ Ou
i~ g T, = ag( 3£>+(1+G§R)8§ (1 + eér)2 do (qaa) (4.35)

where, again, the a subscript preceded by a comma denotes differentiation with respect to that variable.
Note that the last terms in the laplacian expansions of Egs. (A.9) and (A.10) have been dropped in
Eq. (A.34) and Eq. (A.35), respectively, as they are of order €* in the re-scaled co-ordinates.

Further simplification can be make to the inner equations by expanding some of the non-linear term
in Egs. (A.34) and (A.35) to order O(e?). Specifically,

€R " = 2.2
1T cér €k — €“ER
(1:;)2 ~ 2 (1 — 2eR) ~ € (A.36)
This gives,
000 o 09 o, ¢ (PP Dy 2¢ 209
D E—D€ naif +D€ O"taio_ == (a§2+ 875— f 85 (90’2) (AS?)
_ dg(e9) _ df(¢.¢)
do do
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Jdc _ Oc Jdc dc [ Ou o _ 0 ou
2 2 2
—~ A L F == T~ . . P P A.
€ i €Un, €+60'7t 5( g)—l—eqm ¢ €2ER? 5 (q ) (A.38)

The next step arriving at the order by order inner equations for the phase and concentration equations
is to; (1) substitute Eqgs. (A.16) into the phase and concentration evolution equations (A.37) and (A.38);
(2) expand the remaining non-Inear terms (q(¢,c), g(¢) and f(¢,c)) to order O(e?); (3) collect terms,
order by order in €, into separate equations. The second order expansion of g 4(¢) + €f 4(¢, ¢) is given by

o in 5 in o in 5 in7 in 5 in Vo o o "os e
W o Of(e8 + d)ad) d+ochy) (¢0)76<f7¢(¢0,00)+g (qﬁo)d)l)

= (o006, )0 + Foe(05. )t + 97 (95)5 +97 (66) (69)%/2)  (A.39)

where ¢ = € + €pl' + -+ and 6c™ = ecl® + ec! + ---. Substituting Eq. (A.39) into Eqs. (A.37)
and substituting the expansions (A.16) into Eqgs. (A.37) and (A.38) gives two lengthy equations, each of
which has terms of different powers of e. Equations for ¢'™ and ¢™ are given, order by order, as follows:

A.6.1 Inner Expansion of phase field equation A.37 at different orders

ow:  ZA 6 =0 (A.40)

0w T g st = ~Dmo+ 0L + Juleh ) (A1)

o). TE g ey = 0% - 28 (D0 - (on — ) % (a2
ol aor + 9" @ B 4 g e

Note that the subscript ”n” (for normal) has been dropped from the velocity normal to the interface, v,

to simplify notation.

A.6.2 Inner expansion of concentration equation A.38 at different orders
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While the last equation looks daunting, it will turn out that most of the terms involving derivatives of
pg- will vanish when matching the inner and outer equation.

A.6.3 Inner Chemical potential expansion

To proceed further the different order of the chemical potential must also be expanded in terms of the
inner concentration and phase fields. The chemical potential is given by

p o= —eVie+ ml;i(b’ 2 (A.46)
[ &% ek Oc €2 0?c of(¢,c)
~w = a7 <6§2+(1+e§r@)a§+(1+e§ra)2%2)+6 dc (A.47)

where €, = \/wW, was used to define § = (W./Wy)%. The term VZc in Eq. (A.46) was expressed in (u, s)
co-ordiates by using Eq. (A.9), then re-scaled in terms of inner co-ordinates (¢, o) using Egs. (A.33). As
with Eq. (A.34), the last term in Eq. (A.9) was dropped as it is of order €3. Simplifying Eq. (A.47) using
Eq. (A.36) and, once again, retaining only terms up to second order in e, gives,

B o< &> c dc 2, 20%c  ,0% of (¢, ¢c)
a6< o€ ea—€+e§ a€2+e 02>+ 9% (A.48)

where § = §/e, which will be assumed, without loss of generality, to be of order unity. Substituting from
Eq. (A.16) the expansion for ;™ on the left hand side of Eq. (A.47) and ¢, ¢™ on the right hand side,
expanding f(¢i* + 6o, i + §c'™), and collecting terms with like powers of € into separate equations
gives,

Min azc l]’l IIl

o) : o(j = 352 + f.e(90's o) (A.49)
:U/in 7820111 < acln in in in in

O(e) : Ul =075 o¢? — 0K 55 + fre (0 aco )61 + free(dp 700 y)er (A.50)

The O(e?) term for u is not shown as it will not be required.

A few words are in order about the parameter § ~ W2, which originates from the term |e.V¢|?, in the
free energy. This term can be used to account for compositional gradients across an interface, while the
les V| accounts for changes in solid-liquid order [64]. Some phase field theories [14] treat the phase field
interface as an artificial construct and relay entirely on W, (or equivalently €.) to capture the properties
of solute trapping predicted by experiments and sharp-interface models at rapid solidification rates [16].
The work of Ref. [14] assumes that W, is larger than W, although the precise values for W, are not
known. In more recent multi-phase field models [75, 17, 74], multiple phases are modeled using different
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order parameters (or volume fraction fields), {¢;}. In this case, only terms comprising gradients of the
phase fields are required to fully capture the sharp interface kinetics of solidification at low solidification
rates. In what follows both compositional and order parameter gradients will be retained, and & will be
assumed to be of order one, making W./Wy ~ \/e.

A.7 Analysis of Inner Equations and Matching to Outer Fields

The next step in the matched asymptotic analysis is to solve the inner equations for ¢, ¢ and u®
(Egs. (A.40)-(A.42), Egs. (A.43)-(A.45) and Eqgs. (A.49)-(A.50)) at each order and match their solutions,
order by order, to the outer fields ¢° and ¢ (Egs. (A.26)-(A.28) and solutions of Eqgs. (A.30)) using
the matching conditions in Eqgs. (A.17), (A.18) and (A.19). The aim of this exercise is to obtain the
appropriate boundary conditions that the outer phase field model solutions of satisfy when projected into

a hypothetical sharp interface.

A.7.1 O(1) phase field equation (A.40)

Equation (A.40) can be solved analytically by multiplying both sides of the equation by the d¢}/dz and
integrating from a position £ to oo gives,

1 ooi 8¢1n> ;o o] a¢bn 8g J . 0
246Wb8 © ) o ey

;(%f) ~ (906 ()) — g(@ir (50)))

Il
o

(A51)

Inverting Eq. (A.51) gives ¢i' through the solution of

90" =¢ (A.52)

@5
/ \/2 () — g(c0))

where ¢, is an integration constant that defines the position of the interface as in Eq. (A.6). It can be
chosen to shift the origin of co-ordinates in the boundary layer such that ¢ is an odd function about the
origin. The far field (i.e. bulk phase) values of ¢i' are determined by the properties of g(¢) and satisfy,
according to the boundary conditions in Eq. (A.19), lim¢_, oo @i (€) = ¢5 and lime 00 ¢ (€) = 1.

As an example, consider the choice of g(¢) = —¢?/2 + ¢*/4. Equation (A.52) gives

tanh ™' (i) — tanh ™! (¢,) = \55 (A.53)
o' = — tanh (g\_/;’) (A.54)

where
€0 = V2tanh™! (4.) (A.55)

For ¢ to be odd about & = 0, & must be zero, which requires that ¢. = 0 (picking ¢, such that ¢ be
odd about the origin will be required below). In the example considered above, the far field values of the
hyperbolic tangent function are ¢s = 1 an ¢, = —1, which define the minima of g(¢).
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A.7.2 (1) diffusion equation (A.43)
Integrating Eq. (A.43) gives,

ouy B

98 alep, )
where B is an integration constant that may depend of the arclength o. Integrating Eq. (A.56) once
more gives,

(A.56)

/‘L})n — /‘LE —|— B/ —in iny (A.57)
oo q 0 aCO

where pg(0) is a second integration constant, also dependent on the [scaled] arclength o since integration

is with respect to . Since ¢ 6,06) becomes a constant in the liquid, i.e. as & — oo, the limit
in

lime 4 oo i (€) = pp+lime_ o0 f 1/q(¢, ci)dé will diverge unless B = 0. Taking these considerations
into account allows the O(1) expression for the the chemical potential expansion from Eq. (A.49) to be
expressed as
7(920 afmlx( bn Cbn) .
—ad . = ug' A.58
o ) o) (4.59)

where the notation dfRX (i, cih)/dc = OfRX (¢, c)/0c gl i

chemical potential in the interface is thus a constant dependent on curvature. Equation (A.58) can be
solved (or inverted if § = 0) to give the spatial dependent of ci'(¢) through the interface once ui' (o) and
the far field —bulk— values of ci(+o00) are determined.

The far-field values of c'(¢) are determined as follows. Consider Eqs. (A.17) and define ¢, =
lim,, o+ c§(n), and cs = lim,_,o- c¢§(n), where cr(cs) correspond to the lowest order outer concentra-
tion field, ¢§(n), projected onto the liquid/0 (solid/0™) sides of the interface defined by ¢ = 0. The first
of Egs. (A.17) implies that limg o cg*(€) = cr and limg, o cg*(€) = ¢5. Moreover, since () asymp-
totes to constant far field values far from the interface, 92ci*/9¢2 — 0 and 9ciP /¢ — 0 as € — Foo.
Similarly, the first of Egs. (A.18) requires that

will be used hereafter. The lowest order

lim pg' = pg'(0) = lim_pg(n) = pg(0%), (A.59)
n—0

E—+oo

where uS(Oi) is the lowest order chemical potential of the outer field projected onto the solid/liquid
sides of the sharp interface; it is a constant that depends on the local curvature. Implementing these
considerations in the £ — oo limits of Eq. (A.58) gives,

fmlx(¢87cs) in

900) _ (o) = wg(0%) (A.60)
OIREOnscr) _ o) = 0% (A.61)

Once p§(0%) is known, ¢, and ¢z, can be determined. In the case of a flat stationary interface 1°(0%) —
Jteg, which can be determined from equilibrium thermodynamics. For Egs. (A.60)-(A.61) to be self
consistent for curved and moving interfaces, they must be supplemented by an additional equation, which
relates pg(0%) to fRX(gs, cs), ”“X(¢L,CL) and curvature [181, 175]. This is given by the lowest order
Gibbs-Thomson condition, derived in the next subsection (see Eq. (A.68) or, equivalently, Eq. (A.72)).
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A.7.3 O(e) phase field equation (A.41)
The O(e) equation for ¢™ is simplified by first multiplied by 9¢i*/d¢ and integrated from & — —oo to

00, giving
< 9ol N ALY < 9gi
[t eenie=—onrm [~ (%) acr [~

in

where £ = dc¢ — g (#) and the double prime on g(¢) denotes a double derivative with respect to ¢.
Integrating the integral on the left hand side of Eq. (A.62) by parts to give

1n 1n 82 Qsm Lo
/_OO )de = / (352 g (e ))dg_o (A.63)

where the last equality comes from Eq. (A.40). The first integral on the right hand side of Eq. (A.62)
will prove to hold a special significance and is denoted as

_ [ (9
%:/_w( ag) de (A.64)

The second integral on the right hand side of Eq. (A.62) can be simplified by re-writing it as

'] (c) in ) . a , [e%e] a in .
/_Oo ;2? o(Pp,co)dE = /_Oo [0 gg ') _/ 802 o 0700 Md¢ (A.65)

_ { 1 ¢LacL rmx ¢57Cs } ln Mgl 7820
a / o T ga | (A60)

(00", ') d€ (A.62)

where Eq. (A.49) was used to substitute f( ion,cbn) in the second integral on the right hand side of
Eq. (A.65). The last integral in Eq. (A.66) gives

it §cln
5/% S e =0 (A.67)

as can be seen by integrating once by parts and using far field values of dci'/0¢ = 0. The results of
Egs. (A.64), (A.66) and (A.67) reduce Eq. (A.62) to

p3(0%) _ {FRE(Pr,cn) — FRE (45, c0)}

o alc

— (Dwa - )22
(Do + k) Ac (A.68)

where Ac = (¢ — ¢;) and the first of the matching conditions in Egs. (A.18) was used to replace
i = 148(0%). Equations (A.60), (A.61) and (A.68) comprise a closed system of non-linear equations that
can be solved for {c, cr,, ug(0%)}.

Equation (A.68) can be simplified into the lowest order form of the Gibb’s Thomson condition, which
relates the deviation of p§ 2(0%) from its equilibrium value due to curvature and velocity. ThlS is done by
first expanding fR¥ (¢, cr) and fRX(¢s, cs), respectively, in a Taylor series about cr, = cf and ¢g = cf,
the respective equilibrium liquid and solid concentrations corresponding to a flat stationary interface.
These expansions lead to

6fmlx(¢L’cE)<CL—CE)}_{ mlx(¢87 S) afnllx<¢s7 S)(c .

PR o)~ 12 (0. { P Con, )+ LB L
(A.69)
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Use is then made of equilibrium conditions

F — 7Xlli3x(¢L7CE) — igléx((és’cg) — 6fxrﬁnll3x(¢sac§) — 8fgnllgx(¢[ncg) (A 70)
ed k- cF dc de '

where pif, is the chemical potential of a flat stationary interface. Substituting Eq. (A.69) and Eq. (A.70)
into Eq. (A.68) gives B
Daoy . oga_
Ac T A"
Equation (A.71) is put into dimensional form by utilizing the scalings and definitions found in
Egs. (A.11), (A.12), (A.13) and (A.33); first write velocity as ¥ = (d,/Dr)vd™ (where "dim” im-
plies dimensional) and curvature by & = (W, /€e)x9™. Then use the definition of the length scale d, from
Eq. (A.11) and note that o/e = w = 1/X (deduced form Eq. (A.13)). This finally gives,

=182 (%) (22 ()

where the superscript ”dim” are implied in Eq. (A.72). It should be noted that the concentration jump
Ac is related to that of a flat stationary interface by Ac = Acp(1 + dc) where de = Ac/Acp — 1 with
Acp = & — cF'. The deviation of Ac from Acp is on the order of Wyk ~ € < 1. As a result, to
O(e) it is reasonable to approximate Ac =~ Acp. Equation (A.72) is the first order Gibbs-Thomson
condition satisfied by the outer chemical potential field at the interface. The second order correction to

this expression is derived below.

13 (0%) = pq — (A.71)

A.7.4 O(e) diffusion equation (A.44)

Equation (A.44) is greatly simplified by observing that the ui' dependence vanished as it does not depend
on £. The surviving equation is thus

9 in _in alj‘lln _ = %
o (ato. e %) = - (A73)
Integrating Eq. (A.73) from £ — —o0 to £ gives,
. .0 in .
a6, o) T = —Toc (€) + A (A.74)

o

The integration constant A is found by considering the £ — —oco limit of Eq. (A.74) and by assuming
that Q(¢(§ — —o0)) = Q(¢ps) = Ds/Dy, ~ 0. With this assumption the boundary condition

lim ( g(4, cio")au1 =0=—vpc(—o0) + A (A.75)
E——o0 (95

gives A = Pgcs where limg_, oo ¢ (€) = ¢, has been used. Integrating Equation (A.74) once thus gives

. ¢ [ .in — s
pi' = —To / ) oo Lo+ (A.76)
o q( 0> Co )
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where [i is an integration constant to be determined below. It should be noted that that Ds/ Dy, actually
ranges from 1074 — 1072 for most metals during solidification. However, what matters is that diffusion
in the solid over most of the relevant solidification time behaves as if it was zero. This situation can be
practically emulated by setting Dy/Dy, = 0 throughout. Of course, in this case, the solution of pi" may
diverge if the numerator in the integral of Eq. (A.76) vanishes more slowly than g(¢i, ci') in the overlap
region (i.e. 1 < & < 1/e). It will thus be assumed that g(¢i, c') can be chosen such that as & — —oo0,
the function [cl'(€) — ¢s] vanishes more quickly than q(¢i, ') — q(és,¢s) = ¢~ ~ 0. It will also be
shown later that certain classes of phase field models that use a so-called anti-trapping flux in the mass
transport equations can be constructed so as to assure this condition [57].
Tt is instructive to split Eq. (A.76) into two pieces, one valid for £ < 0 and the other for £ > 0,

‘ () —es]  [en — el vo(er, —cs)
mo = _p — — Blde — ——— ¢4+ 0, >0 AT
n o/ { e Lt g (A7)
0 [ in _
pir = @0/ Wdﬂc—kﬂ, £<0 (A.78)
13 q( 0 700)
where the notation
¢ = q(ér,cr)
(A.79)

has been defined to simplify the notation. In terms of Eqs. (A.77) and (A.78), the far field (J¢] > 1)
limits of Eq. (A.76) become,

. > [ Ac [c(z) - c voAc
1 in _ 5 - _ _ —— Sdxr — [ A.80
ghoo!t vo/o { o alean [N (4.50)
0 in _
fm = 0 [ A el (A81)
§——oo —0o0 q( 0 aco )

Using Egs. (A.80) and (A.81) in the second matching condition of Eqs. (A.18) gives

Aug(0™) o oAc

o/n+ 0 _ +

pg(07) + Tng = A+0FT — ps 3 (A.82)
oud (0~

#2(07) + %a(n)f — A+uFT (A.83)

where the definitions

) Ac [C%)n(x) - CS]
F+ = e T — d
/0 { D, } :

F- o= /O @) —e] ), (A.84)

in

—00 C]( 0 >cbn>

have been made to further simplify notation.
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Subtracting Equation (A.83) from Eq. (A.82) and comparing powers of £° of the result gives,
S (07) = pg(07) = (F" — F7)to (A.85)
Equation (A.85) can be made more illuminating by expressing p°® = pg +epg + - - - with pg(07) = u§(07)
and replacing € = Wyvs/Dy, and Ty = vg/vs. This gives,
_ W
=D,

Equation (A.85) predicts that to an error of O(e?), a finite size of interface thickness (W) gives rise to a
jump discontinuity in the chemical potential for moving interfaces. This effect lies at the heart of solute

trapping.
Comparing powers of £ in Eq. (A.83) and Eq. (A.82) gives,
q* 6N8(0+)
on
and 0,u3(07) = 0. Equation (A.87) is cast into dimensional units by substituting vy = vo/vs and
n = vsu/Dy, which leads to

eps(07) —eps(07) (F* = F v (A.86)

= —PpAc (A87)

+
gt ———= = —Acvg (A.88)

Equation (A.88) is the usual condition of mass flux conservation across the solid-liquid interface, to first
order in €. This equation will be augmented with additionsl terms that appear at order €2 below.

It is instructive to conclude this section with a few words about the case of a finite ¢~. It is straightfor-
ward to re-work the steps in this subsection to show that in this situation the flux conservation condition
becomes,

_opg(07) | Oug(0%)
q an q an
In the limit ¢ <« 1, Eq. (A.87) is again recovered. The ¢~ # 0 case now introduces an additional
correction term in chemical potential jump in Eq. (A.85), which depends on the gradient of the chemical
potential arising from the boundary condition in Eq. (A.75). Namely,
ofi—
0% = 50 = (7 = F ) - g 20 (6 - ) (A.90)

= 9pAc (A89)

where GT and G~ are defined by

0 1 1
Gt = / ( - —) dx
—oo\ (P, ) qT
0
G- = / (1_ inl in )dx (A.91)
—oo \¢ q(ég, ct)

Asin Eq. (A.86), both corrections terms vanish as Wy — 0. To eliminate the chemical potential mismatch
for for a diffuse Wy, it is necessary to simultaneously make AF = F*—F~ and AG = GT —G~ vanish, in
general a very difficult task *. For simpler to consider the limit of the one-sided model ¢~ 9,u(0~) — 0,
making the second term on the right hand side of Eq. (A.90) vanish.

4These ”corrections” actually represent physical deviations from the usual interface equilibrium that become manifest
at high solidification rates, since Wy is small in reality. At low solidification rates, however, where an artificially enlarged
Wy is used for numerical expediency, these terms can causes spurious effects and, hence, need to eliminated.
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A.7.5 O(e?) phase field equation (A.42)

Equation (A.42) is simplified, analogously with Eq. (A.41), by multiplying by 0¢i/9¢ and integrating
from £ = —c0 to £ = co. Dropping the ¢ terms dependent on ¢ and o gives,

[ Senic =on [ (5F) e[ 5

_ Ooainain 6in 2 o .
- Duwrr) [ ggdng/_&(gg) gy [ 28 ooy

As in Section (A.41), the left hand side of Eq. (A.92) is zero as the integrand can be converted through
integration by parts to ¢5'L(¢g) = 0. All terms on the second line of Eq. (A.92) also vanish. To see this
it is first instructive investigate the properties of ¢'* from the O(¢) phase field equation

(06" )T+ e (05, c5)el F dE - (A.92)

in

£(61) = ~(Dio + 1) 2
The requirement that ¢i' be anti-symmetric or odd in ¢ about the origin —~which can be done through
the choice of ¢.— guarantees that ¢ /O¢ is an even function in £&. Moreover, in following the approaches
used in quantitative phase field modeling [120, 112, 57, 221, 118], the bulk free energies considered here
will be assumed to satisfy f (¢, ci) = G P 4(¢i"'), where G is independent of £ and P(¢) is chosen to
be an odd function of ¢ ®. Choosing g(¢) to be an even function of ¢, makes the operator £ even in &
since ¢ (¢(€)) is even in €. Since both sides of Eq (A.93) are even in £, ¢(¢) must thus be an even
function of £. These considerations imply that the third and fourth integrals on the right hand side of
Eq. (A.92) are zero as they are integrals of an even functions multiplied by an odd function. Similarly
the last integral on on the right hand side of Eq (A.92) vanishes, as its integrand is odd in & (i.e., even
function x odd function x even function). With these simplifications, Eq. (A.92) thus reduces to

+ fo(00" cp') (A.93)

B = > a¢in in _in\ (in m in
_DU¢U1+/ Tg{f,w( 0 0O + foe(dp, ) dE =0 (A.94)

— 00

The integral term in Eq. (A.94) can be further simplified. Consider, first, the expression

_ >~ a¢6n in _in\ .in
Tl:/_oo(aé-,(OaO)l ag

Equation (A.50) can be used to eliminate the f (¢, ci)¢® term from the second term on the right
hand side of Eq. (A.95). This gives,

T = /
oo O
aC 82 1n 0 in _in) in
- 5/,00 Pe oe2 5+/m ¢ Jec (08 e)eh (A.96)

5This restriction can still accommodate a large class of models It also is quite convenient feature for quantitative phase
field modeling since for flat statlonary interfaces, where c becomes independent of curvature and interface velocity, it
makes the function f¢(¢0 ,cO ) vanish. Thus, for this class of free energies, the concentration and phase field completely
decouple at steady state.

(@in. e >¢m) e (A.95)

(6l cir)cnde — / B L i~ o,

«
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were

oo = / (oY d¢ (A.97)
) \ 0 '
Integrating the last two terms in Eq. (A.96) by parts once yields, for the first,
dcit 92cip < [ a9 93cin
-5 @ = 4 L4 A.98
[ e = 5[ G (499
while the second term becomes,
> acin in _in) jin > in af,c( in’ Cin) a¢ in .in m
_00872 (an)ldf = /_0001#615— . 8§f¢c(070) 1d€

. oSl o in
[P (60 e(onc) = (o0 fulmed] = [ FE L0 g

- 8¢)in in in
- [ pacteddpae (A.99)
Substituting Eqgs. (A.98) and (A.99) back into Eq. (A.96) and making the replacement f.(¢r,cr) =
fre(@s,cs) = NS(Oi)/O‘ = ( 6820 /8§2 + f.el bnvco )) gives

QR LS (A.100)

hi=- € «

—0o0

Comparing T} in Eq. (A.100) with that in Eq. (A.95) gives,

9 ; 0 _ Hein
/_OO ¢§ Foe(@8',¢)el' = — / gg ’2 d£—6ock+/_oo T RGN SE S CR Y

Substituting the left hand side of Eq. (A.101) into Eq. (A.94) gives,

5 % VO S o) ) Gy i)
Doyt /_OO B e~ ok + /_Oo 5 Pinde = 0 (A.102)
where the decomposition Of (¢, ci') /0E = (O /OE) f.pp (A, ) + (D JOE) f s (P, ci') was used in
arriving at Eq. (A.102).
Proceeding further, Eq. (A.76) is used to eliminate xi® in Eq. (A.102). Moreover, from the discussion
of the symmetry properties of ¢i' and ¢'*, the last term vanishes. With these simplification, Eq. (A.102)
reduces to _ _
Doy + 807 — %K + gAc =0 (A.103)

. / dcip { /’5 g(l(?,;;) } de (A.104)

Using Eq. (A.82) and Eq. (A.83) to eliminate f finally leads to

where

o abo.  aDoy, K+ F*Ac_
po(0%) = — AR AC%1+ e (A.105)
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It is noteworthy that ©$(0), unlike §(0), is not the same on either side of the interface, i.e. there is a
chemical potential jump proportional to AF = F'T — F'~ at the interface. This is a direct consequence
of the finite size of the interface (Wy) and leads to the physical phenomenon of solute trapping °

It is instructive to re-cast ey into dimensional form by utilizing the scalings and definitions found in
Egs. (A.11), (A.12), (A.13) and (A.33), giving

do W, K+ F*Ac W¢ TOg

o O:t —_ ¢ ¢ —

ey (07) Ac Rt Ac DL W¢)\Ac

Since p® ~ g+ eus + O(€?), Eq. (A.106) and Eq. (A.72) can be combined to obtain the O(e?) correction
to Gibbs-Thomson correction,

o0y — yor0Ey_  F — _ (Tot00e) W 0 (K + F*Ac) A oy
on7(07) = Ho(07) = peq = Ac X WyrAe {1 95) } T WorAc
Note that the last O(¢) term should receive a second contribution identical to the (K + FAc) term of
the vy term if the asymptotic expnasion is carried out to O(e3). It appeared because the interface velocity
vn(8,t) was expanded as in Ref. ([8]).

For the case e ¢~ # 0 the Gibbs-Thomson Eq. (A.107) will contain an additional correction brought
about by the additional G and G~ corrections to pi*, discussed in section (A.7.4). Working out and
substituting the revised form of pi* into Eq. (A.102), it is straightforward to show that Eq. (A.107) will
contain the extra term

(A.106)

ev; (A.107)

o _ AF -+ 4 - 8#8(07)
Mextra = {AC+ [G -G ]}q Tn (A108)

on the right hand side. As discussed above, things become simpler, without loosing generality, if the
one-sided diffusion is considered, where ¢~0,,u15 — 0 is considered, making this extra correction term
negligible.

A.7.6 O(€?) diffusion equation (A.45)

The final phase in the asymptotic expansion is to extend the flux conservation condition, Eq. (A.88) to

include second order € corrections, as was done for the Gibbs-Thomson condition in the last subsection.

Using what has been determined about i, ¢ and ci', the O(€?) concentration equation (A.45) reads

Q in _in oy’ _ 8(: 801 _ —_/ain _in o 9 in _in 8#8“
aé— (q( 0 560 ) aé- ) - 1 aé- aé- Kq( 0 7CO) aé- 80' q( 0 700) (90'
a in in 8 in _in inalu’in
(%(Q,qb(mo) 85)85<q(0’0)01 8§1>
(A.109)

Substituting q(¢}', ci)Ouit /0& = —vg (i (€) — ¢;) from Eq. (A.76) (for the g~ = 0 case) and integrating
once with respect to & gives,

aNJIQH o — in — in —= ¢ in 82/131 /5 in
N CIGELEIGE Y G cs}dx S [ atoiy iy

in in)

q( 05 Co

—{a.6(8", O + q.c(0p, et (A.110)

60f coarse, at small velocities, where this effect becomes negligible in experiments, a phase field model operated at an
exaggeratedly large W, for numerical efficiency will accentuate this term’s significance, leading to errors.
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Where B(o) is an integration constant that depends on the [scaled] arc-length variable o.

It is not necessary to explicitly determine ui'. Instead the & — 4oo limits (i.e. solid/liquid) limits
of Eq. (A.110) only need be considered. Several terms in Eq. (A.110) can be greatly simplified in this
limit. From the definition of q(¢,c) (Eq. (A.4)), the expression q.(¢F, cf') = —Z(c§)q(¢F, cf'), where
Z(c) = 0 ccpt/ O cpp where p = 0f fiix/9c 7. This implies, using Eq. (A.75), that ¢ .0pi"/0¢ — 0 as & — —o0
since limg_, o q(@g I cl) — ¢~ = 0. Also, from the matching conditions between the inner and out phase
field solutions, lime_, 4 o ¢(€) = 0. With these simplifications the £ — —oo limit of Eq. (A.110) becomes

: in _in 6“‘in = —~ : in — = 0 in
fggloo (q( 05 €0’ 8{2 ) =0 = -—vics — 17 {gl}moo c (§)} — Rl /_OO (g (@) — cs) da
82
+ H / dz q(¢f, ey + B(0) (A.111)
Analogously, the £ — oo limit is
: ininy OH" 28O0 | Pp(07)
1 1n 11 e
53&((1( 07co)a£> on +q o 3

= —Dcp — 5ILm [{vo — Z(cL)gt0,u8(07)} ™ (€)] + R /m dz (cf'(x) —cr)
0

2, ,in o]
srmes = S % ae o) ) +aref +B@) am
0

where the last of Egs. (A.18) was used on the first line of Eq. (A.112) and the second of Egs. (A.18) was
used to express lime_,oc O ¢ ,uiQ’“ in terms of outer solutions.

Subtracting Eq. (A.112) from Eq. (A.111), using the second of Eqgs. (A.17) to express the limits of
c(§) at +oo and noting from Eq. (A.87) that ¢T0,u3(0") = —vpAc (for ¢~ = 0), gives

o(n+ 2 00+ 2 ,in
_q+6mla(;) _ f‘%g —  51Ac+ BoAcr + RIAH + 88”0 AT + ActoZ(cr)S(0)  (A.113)
- 9cg(0™) _ (9cg(07)  Oc§(0F) e
+ {ACUOZ(CL) n — 79 on + an +q* 502 —RUgAc p &

where Ac; = ¢§(01) —¢9(07) has been defined for simplicity, while AH = HT —H™ and AJ =J" —J,
where

e 0

H+ = /0 dx (CL - cbn(x)) , H™ = /_Oo dr (Clon(l‘) _ Cs) ’ (A.114)
e 0

J+ — /O dx (q( bn,CO ) q+) , J = [m dx (q* _ q( gl’cbn)) (A115)

(note that for one-sided diffusion considered here ¢~ vanishes identically and is merely put in the J~
integral for completeness). Collecting the terms Eq. (A.113) corresponding to £° into one equation gives

7Z is strictly also a function of ¢. However in the limits studied below, it will only be evaluated in the far field where
¢>‘“ becomes constant, and thus it is written as a function of c“‘ to simplify the notation.
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the remaining, O(e?), contribution to the flux conservation condition for the case of one-sided diffusion.
Namely,
8ﬁ,in(0+) 82/.Lin
+9M =% 7D 0
————— = —091Ac — RUgAH —
q an 1 0 902

AJ — vgAcy — AC’T)()Z(CL)CT(O-F) (A.116)

Equation (A.116) is reverted to dimensional units by multiplying both sides by € and using n =
vsu/Dr, R = (Wy/e)k, U; = v;/vs, (j =1,2) and o = (¢/Wy)s. This gives
+0(eps(0%) _ 010+ _ _ o+
Dprq D = — (ev1) Ac—[AHuvg 4+ D AJ 0y (kOpu(0%)) | Wyr—uvg (eAct)—AcvoZ(cy) (ec(01))
(A.117)
where the chain rule has been used to write 853@)“ = 855u8(0i) in terms of the angle 8 of the local

interface normal by using the relation xk = 96/9s. Adding the first order flux conservation condition from
Eq. (A.88) to Eq. (A.117) gives

9 (ug(0") + epg(07))
ou

Dpgt —Ac(vg + ev1) — [AHvg + D AJ Oy (Haeﬂg(oi))] Wyr

— (eAcy)vg — AcvoZ(cr) (ec?(0T)) (A.118)

The final stage of this subsection is to show that the last two terms on the right hand side of Eq. (A.118)
are related to the chemical potential jump, proportional to AF. To see this, note that since u°“* =
ud + epg, then po(0F) — o (07) = eug(0") — eu§(07), which, from Eq. (A.86), gives

AFW,
= 75 Vo

enf(07) — epg(07) = 0pg(0%) — 6p3(07) D, (A.119)
The assumption of an asymptotic series expansion implies that the chemical potential jumps, 6u$(0%) =
eu$(0%F), can be related to the corresponding concentration changes, 5cf(0%) = ec§(0%). Thus, the

§ug(0%) can be Taylor expanded to lowest order in terms of dcf(0F), making Eq. (A.119)

B:U’O(CL) o B:U’O(CS) o(N— o olnN— AFW
(’aicacl(m) - gc 5¢8(07) = Apecd(0F) — Ayec(07) = Db, %0 (A.120)
where the definitions Az, = O.pud(cr) = OeefR¥(cr) and Ay = O.pu§(cs) = Oee fiE(cs) have been made.

Recalling the definition of Z(cy), the last two terms of Eq. (A.118) can be written as

— (eAcy) vg— AcvoZ(cyr) (EC?(O+))_—{1+Wa’cM(CL)AC} voecs (01 Hu,ect (07) (A.121)
(0.cpulcr))

For a bulk free energy fig‘ corresponding to an ideal, dilute alloy, it is straightforward to show that
0 cepi(er)/ (3,cu(cL))2 = —1, exactly, for all ¢;,. This is also the leading order behaviour for a wide class
of alloys described by regular or sub-regular solution type models, particularly at low concentrations.
Moreover, to leading order dilute alloys also satisfy 0 .. 7X1]i3"(cL)cL ~ 0 cc 7}{1]5"(05)05 ~ 1 (exact for ideal
alloys), making it possible to approximate the solute partition or segregation coefficient 8 between solid
and liquid phases by

Cs ~ ﬂ 8,ccf£,nfigx(CL)

k= — =~ = 20 - 0 A.122
Cr, As a,ccfgn]lgx(cs> ( )

8This is the same as the equilibrium partition coefficient, ke, only for a flat stationary interface. Recall from sec-
tions (A.7.2) and (A.7.3) that ¢s and ¢y, involve curvature
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Substituting Eqgs. (A.122) into Eq. (A.121), then using Eq. (A.120) and noting that Ac = (1 — k)cy,
simplifies Eq. (A.121) to

KAFW,

— (eAcy)vg — AcvgZ(cr) (ec2(07)) &~ —vg [kec (0F) — ecf(07)] = — A, D, Oh

(A.123)

The final form of the mass flux conservation condition at the interface is given by substituting
Eq. (A.123) into Eq. (A.118), gives, to order O(e?),

kAF
= —Acv, — [AHvg + D ATy (k0pug(0%))] Wk — —— Wy (A.124)

0 (ug(0%) +eus(01))
+9 W 1
Dy ArLDy,

ou

where v,, = vg + €v1 + - - - is the second order expansion of velocity. Note that the other terms that scale
with vy at this order of expansion would acquire v; contributions if a higher order velocity expansion is
used [8].

As in previous sections, it is instructive to discuss the case of ¢~ # 0 on the flux conservation equation
at order €2. In this situation, the left hand side of Eq. (A.124) is altered to

9 (pg(0") +epg(01)) Dyg? (1§(07) + epuf(07))

D +
L4 ou ou

(A.125)

and the additional term

oud (0~

(q— “Oa()> WA Fug (A.126)
u

appears at the end of Eq. (A.124). This correction also vanishes for specific classes of phase field models

constructed such that AF = 0, a condition required to make contact with traditional sharp interface

kinetics at low undercooling. As has been done throughout, it is most convenient to consider one-sided

diffusion, where ¢~ = 0 identically, where Eq. (A.124) is recovered.

A.8 Summary of Results of Appendix Sections (A.2)-(A.7)

It is useful at this point to summarize the relevant results of the asymptotic analysis performed up to this
point in this Appendix, and to interpret the physical significance of the results obtained in the context
of traditional sharp interface models for alloy solidification.

A.8.1 Effective sharp Interface limit of Egs. (A.2)

The asmptotic analysis derived in Appendix (A) derives the effective sharp interface model corresponding
to the phase field model described by equations (A.2)-(A.5). The main results that were explicitly derived
covered the case of zero or very small diffusion in the solid —a metallurgical situation closely obeyed by
substitutional diffusion. Specifically, on length scales larger than the interface width Wy, the diffusion of
solute impurities is governed by the standard diffusion equation and phases are described by a uniform
(i,e, mean field) order parameter. Moreover, the outer concentration (c), chemical potential (1) and phase
(¢) fields evolve such that their asymptotic behaviour (i.e. their projection onto an interface defined by
the surface ¢(Z) = ¢., where ¢, is chosen to make ¢,(z) an odd function) is consistent with the following
sharp interface boundary conditions:
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e The lowest order (in €) of the phase field profile, ¢, is given by Eq. (A.52). Its values far from the
interface are denoted ¢s/¢r, in the solid/liquid phases. The lowest order concentration field, ci', is
given by Eq (A.58)

e Equations (A.60), (A.61) and (A.72) collectively determine lowest order concentrations on the liquid
(cr) and solid (c;) side of the interface, corrected for curvature and interface velocity:

8f1r\n]i3x(¢sa Cs)

Be = ug(0%) (A.127)
AR (¢r.c) _
CIABLOLCL) g 0%) (A.128)
where the lowest order chemical potential through the interface is given by
pe(0%) = uf — (J—“’) Wo) - (ﬁ) S, (A.129)
0 4 \Ac A Ac) \awy ) ° ’

with ng being the equilibrium chemical potential between bulk solid and liquid, Ac = ¢f, — ¢s and
04 is defined in Eq. (A.64). It is recalled that vg is the lowest order normal interface velocity °

and k is curvature. Other constants are phase field model parameters defined at the beginning of
Appendix (A).

e Equation (A.107) describes the second order Gibbs-Thomson correction to the equilibrium chemical
potential on either side of the effective sharp interface:

0o.) W TO (K 4+ FTAc) A

5oi50i_F:_LJ_ 4 — _ Al

HOF) = 10 (0%) = e Ac A" WorAc oD vo  (A.130)
————

xd, o B

where o, is given by Eq. (A.64), F™, F~ are given by Eqs. (A.84), K by Eq. (A.104) and D =
Dp7/ Wq% The underlined terms are the effective capillary length and kinetic coefficient of the
corresponding sharp interface model. Note that 8T # B3~ since F'T # F~ in general.

e Equation (A.124) describes the conservation of mass flux conservation across the effective sharp
interface:
o/(Nn+ o/n+
DLq+a (150 )8—; €43(07)) = —Acvg — [AHUO + D AJOy (magug(oi))] Wyk — %Wwﬁ
(A.131)
where AH and AJ are given by Egs. (A.114), (A.115), respectively, while AF = F* — F~ and the
variables k and Ay are defined in Eq. (A.122).

A.8.2 Interpretation of thin interface limit correction terms

It is clear that the effective sharp interface limit of the phase field model is not the same as the traditional
sharp interface model, in the limit of a diffuse Wy. There are two main differences: The chemical

9 A higher order correction v; to the velocity is not written here, which is equivalent to assuming that v, = vg. Also, Ac
can be substituted for Acg throughout, as this will only lead to negligible, higher order curvature and velocity corrections.
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potential experiences a jump at the interface proportional to AF as shown by Eq. (A.107). Moreover the
flux conservation condition, Eq. (A.124), has three "extra” terms not traditionally seen when describing
sharp interface kinetics of solidification and analogous free boundary problems. It is instructive to consider
their physical origin. The chemical potential jump (AF) arises when solute diffuses through a finite sized
interface with a finite mobility. If the solidification rate is too fast or, alternatively, if the physical
interface of the phase boundary is too large, it is not possible for atoms to remain in local equilibrium
at the interface —one of the quintessential assumptions of traditional sharp interface models. As a result,
the interface maintains a two-sided chemical potential. The AH term arises because of the arclength of
the interface being slightly longer one side than the other. That effectively serves to create a source of
solute at locations of high curvature. The AJ term arises because solute diffusion at the interface can
occur across (i.e. normal to) the interface as well as laterally, along the interface. Again, this is a feature
that, by construction, traditional sharp interface models do not incorporate.

How can the differences between the traditional sharp interface model of alloy solidification and
that predicted by the above phase field analysis reconciled? This is done by noting that all so-called
“correction terms” (first coined as such in [112]) descried above scale with the interface width W, and
the interface speed vg. That implies that if a material has a perfectly sharp phase boundary (W, — 0)
during solidification, all three ”corrections” vanish. In reality Wy ~ 10~%m, not zero. It will also be
noted that the the AF and AH corrections also scale with the interface speed vg. For most solidification
problems associated with thin slab or continuous casting the rates of solidification are sufficiently low
that the correction terms associated with AF and AH are so small that they can be neglected. It should
be remarked that the while the AJ term does not couple to vg its magnitude, Wyr < 1 for nearly all
microstructures of interest and can thus be neglected, even for modest values of Wy.

Of course, conducting simulations of Egs. (A.2) with Wy on the order of nanometers and at an
undercooling that emulates realistic (i.e., slow) solidification rates would lead to impractically long CPU
times (see section (B.3) below). One way to avoid this dilemma is to simulate with an artificially diffuse
interface width W, which reduces simulation times. This, however, leads to results that are quantitatively
different from the standard sharp interface kinetics expected for alloy solidification. This is due to the
amplification of the corrections terms proportional to AF, AH and AJ discussed above. Until recently
this was a problem for most single order parameter phase field models, multiple order parameters models
and models incorporating an orientation field. The work of Karma and co-workers [113, 112, 57] recently
changed this —at least for ideal, dilute alloys— by using a so-called anto-trapping flux source in the solute
diffusion equation. This was then extended by other researchers to multi-phase solidification [74], non-
ideal alloys [194] and multi-component alloys [118]. The anti-trapping formalism is discussed in detail in
the section (A.9).

A.9 Elimination of Thin Interface Correction Terms

This, the last, section of the Appendix (A) modifies the phase field model of Egs. (A.2) so as to make it
possible to eliminate the so-called correction terms AF , AH and AJ discussed in the previous sections.
These modification will involve two changes. The first is to introduce a co-called anti-trapping flux term
in the concentration equation. The second is to make the ¢-dependent interpolation functions in the
phase field and concentration equations independent. In so doing the ”fundamental” origin of the phase
field model will be abandoned in favour for a mathematical ”trick” that serves to endow the [modified]
phase field equations with extra degrees of freedom that make it possible to match the sharp interface
model. The idea of adding an anti-trappig flux was first developed for an ideal, dilute binary alloy model
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by Karma and co-workers [112, 57]. Tt has since been extended to non-ideal binary alloys for single phase
[194] and three-phase solidificaiton [74] and to multi-component solidification [118].

A.9.1 Modifying the phase field equations

Consider the following two modifications to the phase field equations (A.2):

e Let the §(¢) denote the function that interpolates p = .. fRX(¢,c) between bulk solid and bulk
liquid. Define a new function h(¢), where h(¢) and dyh(¢) have the same limits as §(¢) and 9,§(¢),
respectively, at ¢ = ¢ and ¢ = ¢r. Redefine the chemical potential appearing in both phase field
equations by

(8, ¢) = B FRE (h(), ¢) (A.132)

e Add a new source of flux is subtracted from the traditional gradient flux in the solute diffusion
equation. This flux is given by

Vo

J_'a = _Wfba’(d))U((b) C)at¢|v¢‘

(A.133)

and is referred to as an anti-trapping current, after Karma [112]. The functions a(¢) and U(¢, c)
are as yet unspecified functions of ¢ and c.

It is further assumed that the bulk free energy fii(¢,c) (or equivalently f(¢,c) = fiiX(¢,c)/a) can be
cast into the general form

D FRE (0, ¢) = AcG(p — p§(0F), g (0%) — ppy ) P'(¢) (A.134)

where (¢, c) = 0.f2¥(¢,c), while ug(0%) is the lowest order outer solution of the chemical potential
through the interface, ugq is the chemical potential of a flat stationary interface, Ac = (¢ — ¢s) and
P'(¢) = dP(¢)/d¢. The function G(z,y) satisfies: G(0,0) = 0, G(0,y) = y, 0.G(x = 0,y) = 1. Also,
the function P(¢) is odd in ¢ and interpolates between two constants in the buk solid and liquid. Here,
P(¢L) - P(¢s) =-1

The addition of h(¢) and T provide additional degrees of freedom to the original phase field equations
so as to be able to eliminate the corrections terms AF, AH and AJ from the effective sharp interface
limit of the phase field equations derived above. The consequences of these modification to the asymptotic
analysis are considered next. For simplicity only the case § = 0 is considered.

A.9.2 Changes due to the altered form of bulk chemical potential

The section re-traces the relevant algebra of the previous asymptotic analysis to demonstrate how the
first two modifications of section (A.9.1) alter the effective equilibrium and sharp interface properties of
the phase field equations from those summarized in section (A.8). The effect of the anti-trapping will be
considered in the next subsection.

e O(1) phase field equation: This clearly stays unaltered. Moreover, Eq. (A.134) implies that the
lowest order ¢ equation will also solve for the steady state ¢ field.
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O(1) concentration equation: Equation (A.58) follows exactly as before except that h(¢) is used,
OefRE (05, ') = 13 (0%) = O fRE (h(85"), ') = pp(0%) (A.135)
Since h(¢) and g(¢) have the same limits, the modified conditions in Eqgs. (A.60) and (A.61)

will remain unchanged. The lowest order concentration profile through the interface will now be
interpolated by h(¢).

O(e) phase field equation: Using Egs. (A.134), the last term in Eq. (A.62) can be written as

>0 o in in Ac <0 g in in o o /
| P et ciae > 55 [ 2EG(u0p. )~ 3(0%), k50%) b, P (o) (A.130)

However, from Eqgs. (A.58) and (A.59) , u(git, i) = fRX(h(gi), cll) = pg(0%) giving
G( (", i) = ng(0F) , ug(0%) = pisq ) = G(0, p§(0%) — piiz) = 1§ (0%) — pui (A.137)
Using Eq. (A.137) in Eq. (A.136) leads to Eq. (A.72).

O(e€) concentration equation: This is unaffected as the differential equation solves directly for the
chemical poteptial and does not make explic'it reference to the constitutive relation between u, ¢

and ¢. Only ¢ is related —implicitly— to h(¢') via Eq. (A.135).

O(€?) phase field equation: Picking up the calculation at Eq. (A.94) and substituting f s4(¢,c) =
(Ac/a) [G(u— p§(0F) , ug(0%) — uig) P"(8) + G (i — pug(0%), 13(0%) — pgq) Opp P'(6)] and fge(¢,c) =
(Ac/a) Gt — p3(0%) , 4§(0%) — i) Dopt P'(9) yields

B Ac 00 ) in . .
0= —Drgin + o GOE0*) ~ k) [ TGP (oo (A.138)
AC > a(bin in in _in\ ,in in _in\ in
o 8£P/(0){8cﬂ(0700)01 —|—8¢,u(0,co) 1}df

where G, denotes differentiation with respect to the first argument of G. Equation (A.50) is used
to substitute the expression in the curly brackets of the last term in Eq. (A.138) by pi*, the explicit
form of which is still given by Eq. (A.76). Moreover, the first integral in Eq. (A.138) vanishes due
to the symmetry of ¢i* and ¢". These simplifications reduce Eq. (A.138) to

Doyt — 2K+ EAc=0 (A.139)
@ e
which is exactly of the same form as Eq. (A.103), except that K is now defined by
0 in . 13 __ in
K = Ac / 998" pr  giny / @@, e (A.140)
—o00 85 0 q(¢0 » Co )

Using Eq. (A.82) and Eq. (A.83) and repeating the steps in section (A.7.5) following Eq. (A.103)
leads to the Gibbs-Thomson condition in Eq. (A.107).

O(€?) concentration equation: As with the O(e) concentration equation, This is unaffected as the
differential equation solves directly for the chemical potential and does not make explicit reference
to the constitutive relation between u, ¢ and c¢. The final form of the flux conservation condition is
still described by Eq. (A.124).
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A.9.3 Changes due to the addition of anti-trapping flux

This section examines how the addition of an anti-trapping flux, introduced in in section (A.9.1), further
alters the asymptotic analysis of the concentration equation, which is now written as
O v (M (6, )Vulh(e), ) ~ V- ], (A141)

where the function h(¢) is indicated to emphasize that p = f (¢, ¢) is now interpolated using h(¢$). The
idea of the anti-trapping flux J,, is to correct or "kick out” any excess solute trapped through the interface
as a results of its finite width Wy. It thus scales directly with W as well as the rate of interface advance,
controlled by 0;¢7i. The remainder of this section examines how V - J, in Eq. (A.141) alters the previous
asymptotic analysis.

Re-scaing the diffusion equation as was done in arriving at Eq. (A.35), the dimensionless version of
Eq. (A.141) for the inner concentration field ¢ becomes

dc dc Jc W2 -
2 - 2 ¢
9¢ _ e, % 7€ Ve () Ve f—[v.J} A.142
ot T T g, = Ve (9(.¢)Veon) D, et ( )
where the subscripts &, 0, denote transformation to scaled curvi-linear coordinates (£,0) and time ¢.
(Note that for this subsection, the usual “in” superscript for the fields is dropped to simplify notation).
To modify the equations for the inner concentration field at different orders in € it therefore suffices to
examine the last term in Eq. (A.142) containing the anti-trapping flux.

The expression for V -.J, is written with respect to (£, o) with the aid of Eq. (C.17), where Eq. (C.18)
is used to write —V¢/|V¢| and Eq. (A.8) is used to write 9/9¢ in curvi-linear coordinates as

9 v 9 v, 0 v: 9

i s B | P T R A.143
9f  D,0f W, 0¢  D.""00 (A.143)
(where it is recalled that { — t/Dx /v?). Substituting these expressions into Eq. (C.17) gives, after a
little straightforward —and boring— algebra, an expression for the last term in Eq. (A.142). Retaining
only terms up to order O(e?), as has been done throughout the asymptotic analysis, leads to

w2 - 9 _ 09
~Dr {V . Ja} o = ea—5 (a(¢)Uvna§)

e {zfg (a(qb)U%f) +a% (a(¢)U&,gf> - Iia(q/))Uvng?} (A.144)

It is seen that Eq. (A.144) explicitly modifies only the O(e) and O(€?) equations of the inner concen-
tration expansion. Substituting the inner expansions of ¢ and ¢ given by Eqgs. (A.16) into Eq. (A.144),
expanding a(¢) and U(¢, ¢) and collecting the O(e) terms modifies Eq. (A.73) to

0 o Optt _Ocr 0 ; iy Ogin
. in in - _ Y in in in A14
01+ 5 (at6. ) %) =-n %L~ 2 (alopyiel. (A145)
Similarly collecting the O(e?) terms modifies Eq. (A.109) to
a . . 6Min B acin B 8Cin B . . aﬂin . . 82Min
A in _in 2 — 0o 1 in _in 1 in _in 0
o) g (o DL ) = -0 58 - L - ratol ) 2L o) G4 (A.146
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_ é in _in\ zin aﬂlln o 2 in _in\ ,in a/u‘lln
o€ (‘Lqﬁ( 05 Co )PT o€ ) o€ <Q,c( 05€0 )Y o€

= in in in)- 0 o 0 in in in)- 0 P
— ka(¢g")U (g, cg')vo 350 _85(&( o U (dg", o) o 3£1>

8 . . . . /7 in in ins— ain a in
= 3¢ (ol Ut o -+ aloymn o0 + o (e U ER e ymnot] 5L )

where 6U; = U 4 (¢, ) + U o (S, )P, o/ (¢) = Opal(¢) and it is recalled that that ¢ and ci' do
not depend explicitly on o and #. It is seen that only the O(e) and O(e?) concentration equations are
potentially affected by the anti-trapping flux.

A.9.4 Analysis of modified O(¢) inner diffusion equation
Integrating Eq. (A.145) once gives

in
0

in in a‘uin — _in in in in)= 0
a(¢o' o) : = —ocy' (§) — aldg)U (g cp')v

5 0 g +AG) (A.147)

Applying, as before, the boundary condition (¢}, ci) — ¢~ = 0 and ¢! = 0 as & — —oo, gives
. £ cin x) — ¢ I3 U in .in in o in
ulln:_qjo/ [O(in) — ]d{L'—’UO/ ( ngjo)?r’l( O) ¢O d{E—f—ﬂ (A].48)
o (o0 et 0 q(og's ct') o8
Re-tracing the steps of section (A.7.4) again will lead to exactly the same form of the O(e) flux conser-

vation condition given by Eqs. (A.87) or (A.88). However, the chemical potential jump at the interface
given by Eq. (A.85) is now modified to

p3(07) = pg(07) = (FF = F ) wo (A.149)

where

A R v
0 a(og ) 0¢

0 in _.in in in
—00 q( 0 Co ) 29

where F'* and F~ are given by the expression in Egs. (A.84). It is recalled that the lowest order
concentration field ¢i(€) is modified by h(¢') as discussed in the previous section.

A.9.5 Analysis of modified O(¢?) inner phase field equation

It was noted in section (A.7.5) that Eq. (A.76) is used to eliminate pui" in Eq. (A.102). This lead
to Eq. (A.103), where K given by Eq. (A.104). Similarly retracing the steps of the O(e?) phase field
equation analysis of section (A.9.2) with the explicit form of ui* given by Eq. (A.148) leads to the follwoing
modified definition of K,

0o ad)in . I3 Cs — Cin(gj) a( in)U( in Cin) a¢in
K:Ac/ Y p'(gpn / 0y — —9 L2002 0 70 A e A.151
e Ul 0){ o a0 ) aoan oe [ © (A5
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which is like Eq. (A.140) modified by the anti-trapping flux. This definition of K and F'* — F* replace
their previous versions in Eq. (A.107).

A.9.6 Analysis of modified O(¢?) inner diffusion equation

Proceeding analogously to section (A.7.6), the expression in Eq. (A.147)) is substituted into the third
term on the right hand side of Eq. (A.146) and the result is integrated once, yielding

in in 8:u12n — in — in == ¢ in == ¢ in in _in a¢10n
(0" q') o~ U (&) = Bocy" (§) + Ko ; [c0'(€) — ¢s] d + R ; a(ég")U (g’ cg')

a€ dzx

aZMin ¢ in in in in) /in in _in\ .in auin in in in\- a(bin
- 803 /0 q(¢g", co )dx—{Q,¢>( 05 Co )01 + q.e(dp's co )01} 8{1 —a(9g")U(ég's c0') 0o 8{1
in\ in in _in\- in in in _in\- a o
—{a(¢p)00dUr + a' (6" )U (65", i )oo @t + alep ) U (¢, c5') o1 § 8750
13 . . 0 in
- /O (ST (0, ) 52 dz + B(o) (A.152)

It is noted that the fourth and second to last terms on the right hand side of Eq. (A.152) exactly cancel.
As in section (A.7.6) the O(e?) flux conservation condition is obtaining by examining Eq. (A.152) in
the limits £ — +o0o. In those limits, both the large bracketed term multiplying 85%“(5) and the term
multiplying d¢¢"(€) vanish. As a result, Eq. (A.152) reduces to Eq. (A.111) in the limit £ — —oco and
Eq. (A.112) in the limit £ — oco. Therefore, all manipulation encountered in section (A.7.6) follow in the
same way and anti-trapping does not enter explicitly into the O(e?) flux condition. The one difference is
that the AF expression that appears after Eq. (A.119) is now replaced by AF = F* — F~, where the
modified F* and F~ are defined in Egs. (A.150). The corrections AH and AJ remain the same as in
section!(A.7.6).

To summarize, the introduction of the interpolation function h(¢), the anti-trapping function a(¢)
and the freedome to choose ¢(¢, ¢) (within limits) provide three degrees of freedom with which AF, AH
and AJ can be simultaneously eliminated from the effective sharp interface model emulated by the phase
field field model in Egs. (A.2). In this approach, the usual diffusion equation is swapped for Eq. (A.141),
with J, given by Eq. (A.133) and the interpolation function g(¢) appearing in p (via f3X) is swapped
for h(¢).
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Appendix B

Basic Numerical Algorithms for
Phase Field Equations

This section describes the basic ideas of finite difference, finite volume and finite element methods for
discretizing and numerically solving phase field and related partial differential equations. It discusses
explicit time marching as a simple way for evolving such equations forward in time. It also points out
the main differences between explicit and implicit methods. For a detailed discussion of implicit methods
and other numerical methods, the reader is referred to the many texts available on this topic (e.g. [168]).
The material in this appendix compliments the discussions on numerical algorithms presented in the text.
The reader new to numerical modeling is thus encouraged to read this appendix first in order to better
understand the numerical algorithms presented in the text and the Fortran 90 codes provided in the CD
that accompanies the book.

B.1 Explicit Finite Difference Method for Model A

The simplest phase field equation examined in this book is the model A type equation examined previously.
This equation serves as a paradigm for for magnetic domain growth in a ferromagnet. It is of the form
T? _ W£V2¢ _ 8fbu1k(¢)a C)
t 0¢
where fhuk(¢,c) can be assumed to be some non-liner function of space and 7 and W, are constants.
Also, an isotropic gradient energy term is assumed here for simplicity. Equation (B.1) also serves as a
paradigm for many non-linear reaction-diffusion equations. A computer can only represent a continuum
at discrete set of points (¢,7) ((4, 4, k) in 3D) that are physically separated by some length scale Az, Ay,
Az. Similarly, time can only march along in discrete units of a small time step At. As a result continuum
fields go over to discrete arrays defined at these discrete points in space and time, i.e. ¢(z,y,t) = ¢"(4,J),
where x = iAx, y = jAy, t = n/At and the discrete indices satisfy i =0,1,2,3,---N, j=0,1,2,3,--- N
and n = 0,1,2,---, where N is such that (N — 1)Axz = L and L is the size of the physical domain,
assumed here to be square. Here it is assumed that N is the same in each spatial direction, although it
is straightforward to generalize all conclusions below to different N in each direction ®.

(B.1)

IThe function ¢ can also be discretized as c(z,y,t) — ¢™(i, 5)
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Figure B.1: Schematic of the uniform rectangular grid (solid lines) neighboring a pint (i, j) on the grid.
The dashed box denotes the finite volume associated with the grid point (%, j).

The layout of a uniform numerical mesh around a discrete coordinate P = (i, 7) is shown in Fig. (B.1).
Points to the right and left, top and bottom or P = (i, j) are referred to as nearest neighbours. Points at
the diagonals of the square surrounding P are referred to as next nearest neighbours.

B.1.1 Spatial derivatives

There are several ways the to express the laplacian operator (i.e. V2) in Eq.(B.1) on a discrete mesh in
terms of ¢(4,j) (dropping the n for now). The starting point is to relate ¢(i, j) to its value at the nearest
and next nearest neighbours of P = (4, ) (see Fig. (B.1)). This can be done using a Taylor series since
the neighours are on the order of dr ~ dy < 1 from P. Expanding ¢(4,j) around P thus gives,

. . 2 . .
oi£1,7) = o0i,4)+ a‘z’é;’])m + %%A:ﬁ (B.2)
. . 2 . .
o) = o) e 2D ay Ay (B3)
) ) o a¢.,< 182(25.,‘ 8¢.7. 182¢.7.
GlE1,j+1) = ¢i4)+ é;])Aer 576;’2‘7)&2 + é;j)Ay+ 2852‘7)&/2 (B.4)

The =+ versions of Egs (B.2)-(B.4) describe expansions of ¢ about P using information from right/left or
top/bottom neighbours of the point (7, 7). The simplest form of the discrete laplacian operator is obtained
by considering information only from the top/bottom and left/right neighbours of (i.5). Assuming for
simplicity that Az = Ay and adding the + and — versions of Eq. (B.2) to the sums of the + and —
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versions of Eq. (B.3) yields, after re-arranging,

Vo) - - <{¢(z’ + 1) = 90} = (0(0d) = 006 = L))}
L g+ - ¢(z‘,j>}A—x{¢<z‘,J> — (i) — ”}) +O(Az)?
g (B 19) 0l —1,0) 4607 + 1)+ 0~ 1)~ 46(i.7)  (BS)

To highlight the intuitive nature Eq. (B.5), it is suggestively couched in the form of a finite difference of
the right and left finite differenced one-sided derivatives.

Equation (B.5) is inherently anisotropic and is useful for very smoothly varying fields. For equations
with rapidly varying solutions, such as those encountered in phase field and phase field crystal modeling
a more stable and isotropic form of the laplacian operator is required. This is obtained by incorporating
information from the next nearest neighbors. Once again, the + and — versions of Eq. (B.2) are added
to the sums of the + and — versions of Eq. (B.3). To the resulting equation is now added the sum of the
four equations generated by Eqgs. (B.4), each weighted by 1/2. The result is

V(i) = g (5 [0+ 1.9) + 6~ 1,5) + 60,5+ 1)+ 66,5~ )]

+ ﬂ¢(z‘+1,j+1)+¢(z‘—1,j+1)+¢(¢+1,j—1)+¢>(z‘—1,j—1)}
— 36(i,j)) + O(A)* (B.6)

This form of the discrete Laplacian was first used by Oono and Puri [163].

Weighting of the contribution from the next nearest neighbours by 1/2 implies that their contribution
is less important to the laplacian at (i,7) than is that of the nearest neighbours. Many other such
averaging schemes are possible. In the limit of small Az, they all become equivalent.

B.1.2 Time marching

The simplest way Eq. (B.1) can evolved in discrete time on the discrete mesh illustrated in Fig. (B.1), is
by applying a simple forward differencing scheme to the time derivative given by

@ ~ ¢n+1(i7j) - ¢n(7’7j)
ot At

(B.7)

Equation (B.7), in conjunction with one of the second order accurate discretization schemes for the
laplacian yield the following algorithm for numerical time integration of ¢™ (%, j),

0" (6,) — 6" (i)
At

where A2 represents the discrete Laplacian and

0 fouik (@, ¢)
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In the example of Eq. (B.1) fuux is the thermodynamic free energy of the system. In general, N(¢,c)
will hereafter represent the non-gradient terms on of a reaction-diffusion type equation.

Equation (B.8) is a coupled map lattice that allows for solutions of ¢ at a future time ¢t = (n+1)At to
be computed based simply on information of the field ¢ at a past time ¢t = nAt according to the simple,
so-called, Euler scheme

2
W2At

TAZ?

) = 670,9) o A26750) — SN (0,9), (0, ) (5.10)
where A? denotes either Eqs. (B.5) and (B.6) with the Az? removed. The algorithm in Eq. (B.10) is
known as an explicit because all quantities on the right hand side are evaluated at time t = nAt. A
major disadvantage of explicit methods is that they are numerically stable only for very small At. For
the case of two spacial dimensions it will be shown below (see Eq. (B.33)) that Eq. (B.10) converges for
time steps that satisfy At < Az?/ (4W£ /7). This restriction of the time step can make make explicit
simulations very impractical since both Wy and 7 are microscopic parameters and thus Wq% /T represents a
characteristic time to diffuse across a microscopic scale. A large number of time steps a are thus required
to span an experimentally relevant time scale. The nature of this explicit time restriction is discussed
further in section (B.3).

B.2 Explicit Finite Volume Method for Model B

The Cahn-Hilliard equation ("model B”), the heat or mass diffusion equations of model C phase field
models, as well as the phase field crystal equation are all examples of flux conserving equations. They
have the form

Jc -

%= v-J (B.11)
where J is a flux of some quantity (e.g. heat, mass, density, etc). The flux J is typically related to the
gradient of the field ¢(Z,t (e.g. J = —MVu(c(Z,t)), where u is a chemical potential). It is important
when integrating such equations to use a method accurate enough to respect the conservation law of the
quantity that these equations are meant to evolve. This particularly true for the mass diffusion equation
encountered in phase field modeling of binary alloys. The flux balance required to conserve solute in the
case of two-sided diffusivity, as well as the sharp boundary layers over which gradients must be resolved
can lead to oscillatory instabilities when using simple finite difference schemes. A better way to discretize
flux conserving equations is using the finite volume method.

B.2.1 Discrete volume integration

The finite volume method begins with a rectangular grid of volumes, at the centre of which lies the grid
point 7 (4,7)” of the usual finite difference mesh used in the previous sub-section (see Fig. (B.1)). The
idea behind the method is to integrate both sides of the conservation Eq. (B.11) over the area (volume
in 3D) of the finite volume in the dashed lines in Fig. (B.1). This gives

@d%ﬁ::—/ v-fd?”:—/ J-ds (B.12)
vol ot vol surf
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The last equality in Eq. (B.12) uses Gauus theorem to convert the volume integral of a divergence of flux
into a surface integral of the normal flux through the surface (perimiter in 2D) enclosing the volume.
The next step is to approximate the integrals in Eq. (B.12) to lowest order, which gives

de(i, j, t)

2B dudy = — { Tag - idy + Top - jdo = T i dy — Toor - j da} (B.13)

where j];ight is the flux evaluated at the centre of the right hand edge (face in 3D) of the volume depicted
by a dashed line in Fig. (B.1), and idy = d3 is the distance (area in 3D) vector on the right face of
the finite volume. Similar definitions apply for the other directions in the volume. The finite volume is
assumed to be small enough that both the flux and area vectors can be assumed to be approximately
constant along the length (area) of the control volume. The volume integral on the left hand side of
Eq. (B.13) is analogously approximated by taking dc out of the integral. This so-called one-point rule
can easily be replaced by a more accurate integration rule that uses information from corner nodes. For
compactness of notation the symbol J_l;ight = (J_l;ight) = Jg is used. Similarly J7, J;, and Jp represent
X

the the top, left and bottom terms, respectively, of the right hand side of Eq. (B.13).

B.2.2 Time and space discretization

The time derivative on the left hand side of Eq. (B.13) is computed using Eq. (B.7) and evaluating the
fluxes on the right hand side of Eq. (B.13) at time ¢t = nAt gives,

Cn+1(i7j) B Cn(iaj)
At

dedy = —{(Jg — J) dy + (Jt — Jg) dz} (B.14)

Equation (B.14) provides another type of explicit scheme for updating update ¢™(i,j). Note that if
Eq (B.11) contains a source term of the form N(c(Z,t)) on the right hand side, then Eq. (B.14) will
contain an extra term

—/ IN(c(a‘c',t))dBfa\: —N(c"(i,7)) dedy (B.15)

-

on the right hand side. Assuming that Az = Ay and that the flux can be written as a ie. J =
—MQ(c"(i,7))Vulc] = —MQ"Vulc]) gives,

n+1l/: - n - - MAt n n n n n n n n ni: -

1) = ¢(0.9) + 5 ([Q"Vn" ]~ [Q"Vn"], )+ ([Q"Tn") = [Q"Vi"] ) } = AL N ("0, )

(B.16)

where the notation [Q”Vﬂ”]R denotes the component of flux evaluated at the centre of the right edge
(face 3D) of the dashed volume element in Fig. (B.1), and pointing along the normal to the same edge
(see red arrows in Fig. (B.1)). Similarly for the other directions (L, R, T, B). It should be noted that
quantities requiring evaluation at the centres of the dashed lines in the finite volume depicted in Fig. (B.1)
must be interpolated from the corresponding quantities at the mesh points indicated, which are the ones
actually being stored in the computer at any time step.

It is noted that for the special case where Q(c) = 1, centered differences about the finite volume
faces are used to evaluate fluxes, and p = ¢, Eq. (B.16) reduces to the form of Eq. (B.10) and there
is no difference between finite volume and finite differencing. However, when the diffusion coefficient is
spatially dependent, it is preferable and easier to use Eq. (B.16).
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As with all explicit methods, the time marching algorithm of Eq. (B.16) is only stable with a sufficiently
small value of At. The precise formula for the restriction of At for this case depends on the form of the
chemical potential . For the special case of y = ¢, the criterion is once again of the form At < Az?/4M
(in 2D). For more complex chemical potential, where u contains a square gradient of the concentration
(e.g. the Cahn-Hilliard model), the stability criterion becomes At < Az*/(32M) in two dimensions.
These stability formulae for explicit methods are discussed in more detail in section (B.3).

B.3 Stability of Time Marching Schemes

This section discusses in detail the stability criteria for explicit time integration methods. It also discusses
implicit time marching methods, which typically permit At to be much larger than that possible in explicit
methods. Unlike explicit methods, implicit time integration schemes evaluate quantities on the right hand
side of an discretized equation (e.g. the laplacian and non-linear term) at the time ¢ = (n + 1)A, rather
than at ¢ = nAt. So-called semi-implict methods evaluate one the spatial gradients at t = (n 4+ 1)At
but leave the non-linear terms at ¢ = nAt. This difference makes implicit methods amenable to the
use of much larger values of At than in explicit methods. On the other hand, implicit methods can
often required a very large amount of overhead, so much so that it can sometimes negate any advantage
afforded by the much larger time step.

B.3.1 Linear stability of explicit methods

Explicit time stepping schemes such as Eq. (B.10) and Eq. (B.16) utilize information from the previous
time (n) to propagate a field (labelled here a ¢ or ¢) one time step into the future (i.e. from n — n+1).
Their main advantage is that they require minimal overhead in terms of memory allocation and are very
easy to program on a computer. Their main disadvantage is that they are limited to small time steps
At before their numerical integration becomes highly inaccurate and ultimately fails to converge. To
illustrate the nature of this time step limitation, the linearized version of the discrete Equation (B.10)
will be analyzed below for various versions of the numerical laplacian operator and for the case where

N(p,c) =—¢ (B.17)

To keep notation simple, assume that space is in dimensions of Wy and time in units of 7.
Considering first one dimension, the discrete solution ¢"(j) (j = 1,2,3,- -+ N) is expanded in a discrete
Fourier series as

N
1 . o
N\ "L e—z(27r]k)/N B.18
9"00) = 77 2 9k (B.18)
where q@"(k) is the discrete Fourier component k, which corresponds to the continuum wave vector
21k
= B.1
1= yAs (B.19)

This is obtained by comparing exp (27jk/N) to exp (qz), the latter being the factor appearing in the
continuous Fourier transform. Substituting Eq. (B.18) into the 1D version of Eq. (B.10) (i.e. ignore all
terms), and equating the coefficients of exp (—i (2w j k) /N) gives,

¢ (k) = (1 +mAt) ¢ (k) (B-20)
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where

Vk:I—Fk—l—Aiﬁ[l—cos (Tﬂﬂ (B.21)

Comparing Eq. (B.20) with its continnum counterpart

%ﬁ”(k) —(1- @) k) (B.22)

shows that 'y, is the finite size, discrete laplacian. Indeed, in the limit of long wavelengths, or alternatively,
infinite system size (i.e. 2wrk/N < 1), a Taylor series expansion of 'y gives

ok \?  Az? [ 27k \*
FkN(NAx> 12 (NA:E) e (B-23)

Thus, at long wavelengths I';, — ¢2. R
The solution of Eq. (B.20) is found by substituting the trial function ¢™(k) = a,A™ which yields

[A— (14 7pAH)] a,A™ = 0 (B.24)

which gives A = (1 + y4At)" a,. From the initial conditions (Z)O(k), a, is determined and thus
A= (143" $(k) (B.25)
It is clear from inspection of Eq. (B.25) that two conditions for a divergent, discrete solution, to exist:

1+ At > 1
14y At < —1 (B.26)

The first case corresponds to 7, > 0 or 1 — I'y, > 1, which will always occur for some sufficiently large
wavelengths or at a given wavelength for sufficiently large system. This divergence also occurs in the
exact solution of the diffusion equation, é(k’) = e(l_qz)t, for ¢> < 1. It is a physical linear instability
that leads to a growing solutions (e.g. the start of phase separation), which are ultimately bounded by
the ¢3 or one of the other polynomial order terms of ¢ that occur in the non-linear terms N(¢). This
will be discussed further below. The second criterion for a divergent solution in Eq. (B.26) requires that
YAt < 2, which imposes a time step constrain on the diffusion equation of the form

1-Ty

At < (B.27)
The most stringent condition on At occurs when I'y is a maximum, which occurs at the wave vector
k = N/2, which gives, from Eq. (B.21), y% = 1 — 4/Az?. Thus, the stability criterion of Eq. (B.27) in
one spatial dimension becomes
2Az? N Az?
< 4—Az2 " 2
where the second equality assumes, as is usual, that Az < 1 in numerical simulations.
The arguments above can be applied to two and three dimensions as well. For example, in 2D, the
analogue of the expansion in Eq. (B.18) is

At (B.28)

N N
.. 1 n —I27(iky+3
¢n(l,]) — N Z d) (kx’ky)e 27 (i ko+j ky) /N (B29)
ko1 ky=1
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(where I = v/—1 is used here to avoid confusion with 4, the lattice index.) Substituting Eq. (B.29) into
Eq. (B.10), with Laplacian given by Eq. (B.5), gives

O (kas ky) = (14 7k AL) 8" (kas ky) (B.30)

2 21k, 21k
")/kmvky =1- kayky =1- Tl‘Q |:2 — COS <N> — COS < Ny>:| (Bv?)l)

Proceeding exactly as the 1D case yields

where now

A= (14 vk, 5, A)" ¢° (K, ky) (B.32)
The same stability considerations considered previously now yield the time step constraint

2Ax? Az?

At < ——— =~
<87Ax2 4

(B.33)

The one dimensional and two dimensional stability thus differ by a factor of 1/2.

The same considerations can similarly be applied to model A with the more isotropic laplacian of
Eq. (B.6). It is left to the reader to work through the stability analysis to find that the stability criterion
corresponding to the numerical laplacian operator in Eq. (B.6) is given by

2Ax? N Az?

At< ——~ ——
<47Ax2 2

(B.34)

which is a significant improvement over the 2D stability achieved by using the laplacian of Eq. (B.5).

Equations (B.28), (B.33) and (B.34) all imply that information cannot be propagated —numerically
or otherwise— over the length scale Ax faster than the diffusion time inherent in the original equation.
When the full non-linear form of N is implemented maximum on At is typically reduced even further,
depending on the strength of the non-linearity.

Model B type equations, such as Eq. (B.16), can contain higher order gradients. For example, the
diffusion of chemical impurities in a dilute phase is described by d;c = MV?u where u = df/dc — VZc.
Using Eq. (B.5) to finite difference p, the linear portion of the finite difference form of this diffusion
equation becomes (in 1D for simplicity)

At

i) = (i) — 15

[c"(i 12) 4 (i + 1) +6m() — 4 (i — 1)+ (i —2) (B.35)
Substituting the discrete Fourier expansion of the form Eq. (B.18) into Eq. (B.35) gives, after some
algebraic manipulations, At < Az*/(8M). Generalizing this procedure to two and three dimensions is
straightforward, and yield the following criterion time step limitation for model B —at least in the linear
stability sense—

Azt

At < 22d+1 )1

(B.36)
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B.3.2 Non-linear instability criterion for At

The biggest restriction to linear stability discussed in section (B.3.1) arises in the interface since Az is
usually small there to resolve the order parameter. As ¢ moves away from the interface, Az can become
larger as interface resolution issues do not arise in phase field simulations. it turns out, however, that even
away from the interface, there is a restriction to the time step for explicit methods due to the non-liner
terms in N(¢,c). This is shown here by investigating the effect of the non-linear terms at work in a
Model A type equation the discrete form of which is given by

¢ (i) = 9" (i) — AEN(¢"(i),U) (B.37)

where it is recalled that ¢ is in units of 7 an where U here represents an external field or a general coupling
of the ¢ field to a dimesionless temperatire or chemical driving force acting at the mesh point i. For
simplicity, only one dimensional is considered in this analysis. As usual, the extension to two and three
dimensions is exactly analogous.

Eq. (B.37) is an iterative mapping whose stable or fized points, at any mesh point 4, are found by
solving

¢* =" — AtN(¢*,U) (B.38)

Consider as a concrete example the interpolations function for the order parameter equations in sec-
tion (5.7.3) (where ¢ varies from —1 to +1). Equation (B.38) becomes

¢* = (¢)* = AU(1 = (¢%)*)* =0, (B.39)
the solutions of which are
o* = =+1
* 1 _ N 2
;o= ( 1/1+4 () ) (B.40)

The first two of these roots should be recognized as the bulk values of the order parameter in model C
for the pure material or alloy models discussed in the main text. Typically, the driving force AU is small
and so one of two roots on the last line of Eq. (B.40) becomes ¢* ~ AU, while the other satisfies [¢*| > 1
and will be ignored.

The root ¢* ~ AU is unstable as any perturbation at all from ¢ = ¢* causes ¢ to flows away from it.
The roots ¢* = +1, on the other hand, can be stable or unstable depending on the size of At¢. This is
illustrated in Fig. (B.2). For small enough At, ¢* = £1 becomes a stable attractive fixed point. That
means that the sequence of iterates {¢™ (i)} asymptotically goes to ¢* = 1. As At increases, the sequence
of iterates {¢"(7)} will eventually become locked in a so-called limit cycle around the ¢* = 1 fixed point,
signaling the breakdown of stability 2.

The criterion separating stable from non-stable behaviour for a fixed point of the iterative map in
Eq. (B.37) is given by

a¢n+1
Y

=g~
:>1+At(1—3(¢*)2+45\U(1—(¢*)2)¢*) = 0
(B.41)

2(It is simplest to consider the physical case where all ¢(i) values )initially lie in the range —1 < ¢°() < 1). Indeed, for
#°(4) values lying too far from ¢* = =£1, iterates ¢™(i) will diverge to +oco
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-_:.:‘;buH . ¢;;+1

Figure B.2: Flow of iterates of the map ¢" ™! = f(¢") where f(z) = = + At (x — 2= \U(1— x2)2).

(Left) for At < 1/2, iterates ¢"*1(i) flow to the fixed point ¢* = 1. (Right) For At > 1/2 the fixed point
generates a so-called limit cycle. Further increasing At will cause the interates ¢"*1(i) to diverge. In ths
figure AU = —0.25.

Substituting ¢* = +1 into the last line of Eq. (B.41) sets the threshold on the maximum value of At as

o ma2)

As mentioned at the beginning of this subsection, the non-linear conditions imposed by Eq. (B.42) is less
restrictive than the linear condition imposed by Eq. (B.33), due to the fact that in most cases the mesh
spacing should resolve the interface with some degree of accuracy, i.e. Az < 1. To the extent that it is
sufficient to very weakly resolve the interface, it is possible to let Az > 1, thus allowing At to increase
toward its ultimate cap imposed by Eq. (B.42). It turns out however, that there is also a constraint on
how large Ax can be made in an explicit method before a grid-related instability sets in. This is examined
next.

B.3.3 Non-linear instability criterion for Az

This subsection continues with the example of section (B.3.2) and examines the effect of Az on the
stability of a model A type phase field eqution. In particular, consider to linear order the structure of
the steady state solution of the model A type equation studied in the previous section around one of its
stable points, ¢* = {XU, +1}. Let the solution be expressed in the form ¢ = ¢* + d¢. Substituting this
expansion of ¢ into model A gives

V2564 (1-3(") +4AU(L = (6")2)9") 60 + {6" = (6)* ~AU(L = ("2} =0 (B.43)

=0, Eq. (B.39)
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The solution of Eq. (B.43) in 1D is of the form

0p ~ V2T for P" =+1
0 ~ eii\/E‘”, for ¢* ~ \U, (B.44)

where
B=1-3AU)2+4(\U)*(1— (\U)*) =1+ (\U)? (B.45)
The criterion determining how large Az can now be made on the basis of how well the solution of the

discretized equation corresponding to Eq. (B.43) reproduces the solution forms implied by Eqs. (B.44).
The discrete version of Eq. (B.43) is given by

6™ (i + 1) — 260" (i) + 6¢™ (i — 1) + Ax? (1 —3(¢")? +4NUQ1 - (¢*)2)¢>*) 5™ (i) = 0 (B.46)

where Eq. (B.5) is assumed for the square gradient operator. Consider first the case ¢* = AU Equa-
tion (B.46) is solved by a solution of the form

5¢™(i) = AN’ (B.47)

if the constant A is equal to

(2 — BAz2 £/ (BAz? —2)* — 4)

A= B.48
. (5.45)
Similarly, the case ¢* = %1 is solved by a solution of the for og Eq. (B.47), if A takes the form

A= (1 + Az +\/(Az2 +1)% — 1) (B.49)

The ¢* = £1 roots in Eq. (B.49) are always real and this so in Eq. (B.49) can always be cast into the
analytical form in second line of Egs. (B.44). On the other hand, for the solution of the ¢* = AU solution
of the order parameter can only be cast into the form of the first line in Egs. (B.44) if the root A in
Eq. (B.48) is complex. This implies that the radical must be negative, which requires

(BAz® —2)" =4 < 0

2
— AT < e (B.50)

1+ (S\U)2

Thus Eq. (B.50) puts a hard limit on how large Az can be which, not very surprisingly perhaps, is very
close to Az =~ 1 when the local driving force is ot too large, as suspected by physical considerations
previosuly.
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B.3.4 Implicit methods

The restriction on At imposed by explicit time marching can be overcome by using an semi-implict
time marching scheme, which allows for much larger time steps At to be used. Briefly, implicit method
express the fields on the right hand side of Eq. (B.8) in terms of the new time n + 1. This results in
an implicit system of equations of the form AZ"! = b(#"), where "' is the solution at all nodes at
the new time n + 1, which depends on the solution at all nodes at the previous time step, n, and A
is a non-diagonal matrix of constants. This system of equations can formally be inverted to be solved.
However, most straight inversion approaches require too many operations and are or little use to phase
field modeling. For example, on an N x N mesh, matrix inversion of the above system of equations could
take as long as N® operations. A simpler alternative is to solve this system of equations by iteration,
however the simplest iterative methods (e.g. Jacobi, Conjugate gradient, Gauss-Seidel) 3 require from
O(N3) to O(N*) operations to converge. Contrast these to one time update of an explicit scheme which
requires N2 operations (i.e. one per node). Indeed, in most simple semi-implicit methods the gains of
using a larger time step are nullified by their convergence time. As a result they are usually avoided in
dynamical simulations requiring a very large number of time steps for the requisite physics to unfold.
Two exceptions to this general rule are multi-grid methods and Fourier techniques both of which can
require of order (O(N?) steps) to converge. Implicit methods are beyond the scope of this book and the
reader is refereed to the abundant literature on this topic for more information.

Before closing this Appendix, it is noteworthy that the Cahn-Hilliard Eq. (4.14) can also be integrated
numerically using finite differences —although as a conservation equation the finite volume technique
presented below may be more accurate. Because of the conservation law there will be a A%¢(i,j) «+ V¢
term generated. The easiest way to handle this equation numerically is to compute A2M™ (i, j), where
M™ (i, 5) is the right hand side of Eq. (B.8).

B.4 Semi-Implicit Fourier Space Method

This section describes the formulation of a Fourier-based semi-implict method for solving phase field
crystal type equations. A great advantage of working in Fourier methods is that in frequency space, even
powers of gradients become even-powered algebraic expressions of the wave vector (or inverse wavelength).
These methods are thus especially convenient to use with equations that exhibit periodic solutions such
as those found in phase field crystal models.

The paradigm equation to be considered is of the form

Ip dF[p]
5 V2 <5p> (B.51)

A commonly used form of F[p] in phase field modeling is given by

Flp] = / {pl_g(v)/ﬂr f(p)} dz (B.52)

3The simplest iterative schemes, Jacobi iteraction. decomposes the system AZ™*t1 = b(z™) into (Ap + A,)a*t! =
b(Z™), where A is the diagonal portion of A and A, is the off-diagonal portion. The original system is then written as
Apitl = b(z") — A,ZLT! where m is an iteration index. An initial " guess” for J_:’g+1 leads to a_c’f+1, which is substituted

m+1
back into the right hand side, leading to 5;+1, etc. The sequence {5:”n+1} presumably converges to a fixed point, i.e. %1
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where the operator C'(V) is in general a function of gradient operators, i.e.,
C(V) = Co + CoV? + CyV* (B.53)

while f(p) denotes any non-inear function of the field p. The generic free energy given by Egs. (B.52)-

(B.53) can be specialized to the case of the phase field crystal model by setting 1 — C(V) = B; +

2B%V? + BsR*V* (which would make the phase field crystal constants B; = 1 — Co, By = C5/(4|C4|))

and f(p) = —p3/6 + p*/12. This model can also be specialized to the Cahn-Hilliard equation used to

study spinodal decompositio by setting Cy = —1, Co = 1, C4 = 0 and dropping the cubic term in f(p).
Substituting Eq. (B.52) into Eq. (B.51) gives

& 9 [(1 - V)t N(p) (B54)

where N(p) = 0f(p)/9p. Equation (B.54) can be efficiently solved numerically by taking the Fourier
transforms of both sides of Eq. (B.51), which yileds

e 22— CORpe+ AN (8.55)

where N}, [p] is the Fourier transform of N(p) and A? is the discrete Fourier space representation of the
V2 for a finite size system (which is algebraic in Fourier space). For example in a system of infinite size
V2 — |k|2. Finally, C(|k|) is the Fourier transform of the operator C'(V)p.

Defining wy, = A2 (1 — C(|k|)), and 7x(t) = A2 Ny [p], we can formally invert Eq. (B.55) 4, obtaining

¢
pr(t) = ewkt/ e~y (s)ds + e pi,(0) (B-56)
0
can similarly write Eq. (B.56) at time t + At,
t+At
prt+At) = ewrtHan / ey (s)ds + €A pr(0)
0
¢ t+ At
= ewk(t+AD) / ek (s)ds +/ e g (s)ds | + e (A i (0)
0 t
t+At
_ ekatﬁk(t) + ewk(t+At)/ e_wksﬁk(s)ds (B57)

t

The integral in the last line of Eq. (B.57) can be numerically approximated by expanding 74 (¢t + At) to
second order, i.e. g (t + At) = 7y (t) + (dig(t)/dt) At. This gives,

t+AL 1
/ e "R (s)ds = 3 (efwktﬁk(t)At + 67“”“(Hm)ﬁk(t)At + O(At)2> , (B.58)
t

4This utilizes the solution methodology for the first order ODE 4’ 4 p(x)y = g(x) whose solution is given by y =
(fx u(s)g(s)ds) /u(z), where the integration factor pu(z) = exp(— fx p(s)ds). In our case, p(t) = —wy, and g(t) = 7k (t) as
defined in the text.
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which leads to

eWk (t+At)
2

= Bty (1) + % (e'”’“Atﬁk(t)At + i (t) At)

Pt + AL~ e A (1) + (e_wktﬁk(t)At+e‘“”*‘(t+At)ﬁk(t)At)

1
= AL (1) + 5 (s () At + O(A)? + . (t) At)
= VA5 (1) + AtAZ N, [p] (B.59)
Recognizing that factor A2 At in Eq. (B.59) can be approximated, for small At, as
AZAE = (e™A 1) /(1 - C(R])), (B.60)

allows us to write Eq. (B.59) as

elAt=C(kD)AL _ 1

(1—C(Ik)

Pilt + At) m ALA-CUMAL 5, 4y 4 Ny [p(,1)] (B.61)

Equation (B.61) formally constitutes numerical scheme for time marching Eq. (B.55). A higher order
form of this scheme can be found in Ref. [153]. It becomes identical to traditional explicit time marching
for At < 1. Its main advantage, however, arises from Eq. (B.60), which allows Eq. (B.61) to be advanced
in time with significantly larger time steps than most traditional semi-implicit schemes. Moreover, unlike
most semi-implict methods, the one presented here requires only O(N?) operations per time step. Of
course, like semi-implicit methods, there is some upper bound to At. However, rather than the right
hand side of Eq. (B.61) becoming unstable (i.e. ”exploding”) if At > 1, the solutions become inaccurate.

B.5 Finite Element Method

Since its introduction into main stream phase field modeling about 10 years ago, one of the most efficient
numerical scheme for [accurately] simulating phase field models is the use of adaptive refinement (AMR).
At the heart of AMR is the use of non-structured meshes, on wich the physics of a particular model
is played out using finite difference, finite volume or finite element methods. A separate section on
adaptive re-meshing algorithm is beyond the scope of this book. (The interested reader can refer to one
of [171, 173, 85] and references therein for details on AMR). The solvers in most AMR codes is the finite
element method. Since most physics and materials science students have the least experience with finite
elements, this section provides a basic tutorial on finite element theory. Specifically, it introduces the the
Galerkin finite element approach and applies it in 1D and 2D to solve the Poisson equation. Extension
to 3D is strightforward and left to the reader.

B.5.1 The Diffusion Equation in 1D

Consider first a generic 1D reaction diffusion equation of the form

op

5 = V(eV6) + plx) (B.62)
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where here € denotes the generalized diffusion constant. Consider a mesh as shown in Fig. B.3. The mesh

has m elements of width “I” denoted by e;, ¢ = 1,...,m. These constitute a mesh of nodes labeled by
“global node numbers” running from ¢ = 1,...,m-+1. Each element has a set of “internal node numbers”
j=1,...,n, where n is the number of nodes in an element.

Global Co;)rdinate System

eqepegeqee @ e

] C 5 6 7 BL m m+1
global element
node numbers numbers

Local Coordinatg System
e;

j=1 i

k_/ internal

node numbers

Figure B.3: Global versus local coordinates in 1-D used in the finite element method.

To proceed, define a family of weight functions W;(z) where j = 1,...,n. In addition, define a set
of so-called “shape functions” Nj(z) for j = 1,...,n, which are used to interpolate the field ¢ in the
element as

6= Nj(x)¢; (B.63)

where ¢; is the field at the node labelled internally by j. In this simple one dimensional example being
considered here, n = 2 (see Fig B.3). The “weighted residual” approach to finite element analysis [53]
forgoes the “exact” solution of Eq. (B.62) in each element, in favour of an approximate solution of the
equation when weighted by each of the functions W;(z), j=1,...,n

il .
Jiw — [ Wi & (@32) = Ji Wil ps(@) =0, V j=1.2,...n  (B64)

In the Galerkin finite element approach, W;(z) = N;(x) for j = 1...n, that is, the weight functions are
the same as the shape functions. Equation (B.64 thus becomes

il
/ Nj(x){%—V(engﬁ)—pf}dx:O, vV ji=12...,n (B.65)
(i—1)l ot
which can be written in a more compact form as
il
hah A de = B.
/( - [ (o) ] { = V(eV§) —py pda =0 (B.66)
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The interpolation of the field ¢ within the domain of the element, Eq. (B.63), can similarly be expressed
in this vector notation as

6= NN % | = VIioe )" (B.67)

€

where the shape functions Ny and N> in the global coordinate frame are chosen for linear interpolation

as )
Ny(z) = lz==0] (i—1)<x<il i=1,...,m

I B.68
Nyp(z) ==Lt (i—1)<a<il i=1,...,m (B.68)

where [ is the size of the element.

In what follows, it will be convenient (particularly in 2D below) to work in a local coordinate system,
defined by a local variable £ that spans the domain 0 < £ < 1. The transformation from local coordinates
to global coordinate is made via

Tglobal = 15 + (Z - 1)l = (Z - 1)l(1 - g) + Zlf (B69)

The Jacobian of this transformation between the local and global coordinates is

a ooa
= xgl bal :l (B7O)

=g

In local coordinates, the shape functions thus become
Ni(§) =(1-9) (B.71)

Ny(§) = ¢ (B.72)

Note that when the transformation from the local to the global coordinates uses the shape functions used
to interpolate the field within an element, the finite element formulation is called isoparametric.

Substituting Eq. (B.67) into Eq. (B.66) gives rise to a matrix equation satisfied by the nodal field
values in each element. Specifically, the first term in the matrix equation becomes

il d il . 1 .

[ N T = [ VTNl = [ INOT V@) (B7)
(i=1)1 (i—1)1 0

where [¢.,] is shorthand matrix notation for the nodal field values, i.e.,

1

[¢e.] = [ ¢2 ] (B.74)

Note that the last equality is in element-local co-ordinates. The last integral is referred to as the ”mass
matrix”, defined by

Co] = / IN(©)]T[N(€)Jide (B.75)

The second term in the matrix version of Eq. (B.66) gives rise to

/(:ll)l[N]aaaz (Eaic‘b) dv = /(;ll)l ([N}Taax <€£C([N] [cbei]T)) da (B.76)
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Integrating by parts via

u = [N] (B.77)
v = (N]lg]") (B.79)
dv = a% <eaax[N] [¢]T) de, (B.80)
gives
/ Tl (e@)a (N 1T))}dx = e L et
(i—1)1 Ox Ox ° B Ox S =

il
- /( OV L N][6Tde (BSY)

which is equivalently expressed in local coordinates as

o (i ) ac

- / ly Ndé) 6" (B.52)

The first term on the right hand side of Eq. (B.82) is a boundary term for all elements e;, i = 1,2,3,...m.
It is straightforward to see that all terms arising from adjoining elements interior to the domain 0 <z < L
cancel, except those from the two elements containing the left (r = 0) and right (z = L) domain
boundaries [53]. These two surviving terms, from elements e; and e, (m + 1 is the rightmost node in
the domain), are given by

Ben” = —i(e = 0 0 2 e = oo T, (B.53)
and _ 8
(BCmaa]T = V(e = 0" L 2 e = i, 7 (B.5)

Moreover, the second term on the right hand side of Eq. (B.82) can be written as

(% / €<f>§5[ I ég]df)m = [Ke][¢e]" (B.85)

where [K.,] is referred to as the “stiffness matrix”. The final term in Eq. (B.66) is the source term. This
is written as

2l 1
/ N7 py(2)da = / N7 py(E)1d€ = [R.]" (B.56)
( 0

i—1)l
Collecting the terms in Egs. (B.75), (B.85) and (B.86) and the boundary condition in Eq. (B.82), the
following matrix equation is obtained for each element:

[Ceillde,] = [Ke ][de] + [Re]” + [BCe,]T (B.87)
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where the boundary term [BC.,]T is formally written for each element, but is only non-zero in the
elements e; and e, via Eqs. (B.83) and (B.84). To obtain the global solution valid simultaneously
at all the ¢ = 1,...,m 4+ 1 nodes in the domain (the straight line in this 1-D example), all element
equations (B.87) must be assembled into one global matriz equation. This means that the corresponding
rows and columns in the matrices of Eq. (B.87) must first be indexed to their corresponding global node
number °. Assembly then means that the entries of the n x n element matrix equations are dropped to
the corresponding entries of a global m + 1 x m + 1 matrix. Assembly is expressed symbolically as

(DolCed)ol" = (o0 )0l + YIReIT + 3 (BC. )T (B.53)

and gives a matrix equation whose solution yields [¢]”, the collection of field values at each node at time
t The global equation is compactly expressed as as

[Cl6] = [K][¢]" + [R]" + [BC]T (B.89)

The simplest time stepping algorithm to simulate the time derivative in Eq. (B.89) is an explicit
Euler time-stepping technique that is analogous to that described in section (B.1.2). Namely,

which, after re-arranging, gives
[bn41] = [on] + ALUC]H([K][¢4]" + [R+ BO)) (B.91)

The inversion of the [C] matrix is quite memory and CPU time consuming, especially for systems with
many nodes (e.g. m > 200 X 200). It is also potentially numerically unstable and should be avoided. To
overcome these numerical limitations, we use the approximation of consistent mass lumping [53]. This is a
phenomenological method that makes the mass matrix [C] diagonal by redistributing the length (“mass”)
of each element equally onto each node. Lumping of the mass matrix thus transforms

[Ce.] = % ( (1) (1) ) (B.92)

i

The global mass matrix in lumped form in the global frame thus becomes

1

C] = - Ty (B.93)

1

in this one-dimensional case. It should be noted that for a regularly-spaced mesh, the use of a lumped
mass matrix in Eq. (B.91) leads to to the same result as that obtained using an explicit finite difference
scheme, discussed previously.

5Each row and column represents an internal degree of freedom (node) of an element, which in turn can be mapped onto
a global node number.
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B.5.2 The 2D Poisson Equation

The method defined above can be generalized to 2D in a straightforward way. Consider a mesh of 4-
noded square elements as shown in Fig. (B.4). The 2D Galerkin finite element analysis begins with

Global Coordinate System
—t

O—5@ o
5 eb: e?
P—————— -

e | € en‘ elZ

global —o ®
node numbers

Local Coordinatg System

clement
numbers

e internal
6 node numbers

Figure B.4: Global versus local coordinates in 2D used in the finite element method.

the interpolating functions defined in the local coordinates of each element (See Fig. (B.4)). For linear
interpolation based on the four noded elements, the shape functions are given explicitly as

Ni(gm) = {(1- 61 - n) (5.94)
Nolgm) = (1 +6)(1 ) (8.95)
Nagn) = (1 +6)(1+1) (5.96)
Nu(gm) = (1= 61 +n) (B.97)
The field being solved for is interpolated within the element as
¢ = [N][pe,]" = [N1(&,m) Na(&m) Ns(€,n) Na(§,m)ll¢e]” (B.98)

In the isoparametric formulation, the transformation from internal to global coordinates is given by
X = Nu(&m) X1 + Na(§,m) X2 + N3(§,m) X3 + Na(&,m) X4 (B.99)

and
Y = Ni(§n)Y1 + Na(&,m)Ya + N3(§,1)Ys + Na(§,7)Ya (B.100)
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Where X; and Y; are the x and y co-ordinates of the 4 nodes of the elements. The Jacobian of the
transformation is defined by the matrix

dz Oy
_ % % (B.101)
on 0On
where -
| === (B.102)

Through these definitions, integrals on the 2D domain €., of an element are transformed as

/ / £, y)dady = / / F (€ m), y(&,m) | Idédn (B.103)

The Galerkin finite element residual of the 2D Poisson or diffusion type equation is written as

// { — V(e Vo) —,of}dxdyzo (B.104)

Working in local coordinates, the source term in Eq. (B.104) becomes

//[N]Tpfdwdy = / / Tp(&,m)]J|dédn

= b / / Tp(€, m)dedy = [R]T (B.105)

where the last equality assumes equal sized elements of dimensions [, x l,. Using Green’s theorem the
gradient terms in Eq. (B.104) becomes

/ Q/ [N'V (e Vo) dady =
//83: e—dxdy—k?{ N|T 5¢dl //6 eidﬁdy—’_%[N]TE%jdl (B.106)

where the field within the element is interpolated by
¢ = [N][de,]” (B.107)

The partial derivatives are expressed in local element coordinates as

1

0¢ ON1 ONg ON3 ONy o))

€ = [Nig][6e:]" ot oc o¢ o¢ | *| o (B.108)
o
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and

b1
0¢ T ON; ON3 ON3 ONy ¢2
9% _ N, T, 1T = B.109
o0 = llo 7 = |G SR RO | (B.109)
b4
Equations (B.108) and (B.109) are compactly expressed as
b1
Pre Nise Noe Naje Nayje b2
= B.110
( (b/n Nl/n NZ/'!] NSIn N4/7] % ¢3 ( )
P4

The partial derivatives in the global frame are related to those in the local frame by

b1z —1| Nug Nojg N3jg Najg . -
=7 e:]” = (Bl B.111
( ¢/y Nl/'r] N2/77 Ng/n N4/'!7 [¢ 1] [ ][¢ L] ( )

In terms of Eq. (B.111), the boundary terms in Eq. (B.106) become

Fivireglar— ([ NTeenBO1IIAE ) 01T = (Bl o] (B.112)

74 [N]Te%jdl - ( / INTTe(¢, ) B(2 :>|Jdn) (6e]7 = [BC,Je, [6e.] (B.113)

-1
where B(1 :) and B(2:) denote the first and second rows of the matrix [B], respectively. The area integrals
in Eq. (B.106) are expressed as

n=" ([ [ imardsaacn) 6.t (B.114)
and
p=" ([ [ imeardse.icn) 6. (B.115)
which can be combined into one matrix as
I = L+1D
= ([ [ tmaarsa.) - e Be ) de i) 6"
= ~[Kllpu]". (B.116)

where [K],, is defined as the stiffness matrix. To solve the complete problem, it is necessary, as in the 1D
case, to generate, or assemble a global matrix equation out of each of the element equations. The global
finite element matrix becomes

(D21C1e) 1" = = (Y18 ) @) + SOIRIL + > (IBC)e, + [BGL., ) (6] (B.117)
- [C] - (K] ei[R]T - [BCIT
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An explicit formulation for time integration of Eq. (B.117) is given by
[Dn-+1] = [0n] + ALC] (—[K][¢a]" + [R]T +[BC]T) (B.118)

Using the same principle of consistent mass lumping as in the 1D case, the corresponding 2D lumped
mass matrix for each element becomes

1000
ll,,| 0 1 0 0
Cal=""10 0 1 0 (B.119)
000 1

€4

The global mass matrix in the global frame is assembled in the usual way. The above formulation can
also be used to solve the Poisson Equation, in which case time in Eq. (B.118) is fictitious. It serves as an
iteration variable in a Jacobi iteration scheme for Eq. (B.118). At convergence (¢,+1 = ¢5,), the solution
is that of the Poisson Equation.
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Appendix C

Miscellaneous Derivations

C.1 Structure Factor: Section (4.6.1)
The structure factor is formally defined by
S(@.6) = [ T o (7 - 1) (BY

where ¢(7, t) is the order parameter and the inner double angled brackets represent volume averages over
all space of the variable " while the outer angled brackets represent averaging over an infinite number of
configurations of the system. Representing ¢(7,¢) by it Fourier representation

(7, 1) = / kg (t)e T (C.2)
Eq. (C.1) becomes,

S(q.t) = / df’<<( / dk’da,;e“?-?')
E

d ’¢~eﬂ' ’
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Where it has been assumed that the order of the integrations and averages (which is also an integration)
can be changed. Using the definition of the delta function of the form

/ die= R =7 = §(i7 — q) (C.4)

makes it possible to eliminate the K integral in Eq. (C.3), and making the replacement K= q. This
gives,

S(q,t) = (( / / digppge F-Dy) (C.5)
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Implementing the inner angled brackets in Eq. (C.5) as a spatial average over 7 finally gives,

</ / dkro ( / dﬁe—i<l€—@-ﬁ>>

= (lo-a* (C.6)

n
—~
<y

-
S~—

Il

where the expression in large round brackets in Eq. (C.5) is identified with §(k — ¢). Recall, once again,
that the remaining angled brackets in Eq (C.6) denote different realization of the ¢ mode of the square
of the Fourier transform of the order parameter.

C.2 Transformations from Cartesian to Curvilinear Co-ordinates:
Section (A.2)

This section derives the transformation of the V operator to its counterpart in the curvilinear coordinate
system used in the matched asymptotic analysis of section (A) and elsewhere in the text. The starting
point is Fig. (C.1) which illustrates how to represent a point P with cartesian coordinate (z,y) in
curvilinear coordinates (u,s) which are local to the interface. In the figure, 7 is a unit normal to the
interface at point @, while 7 is a unit tangent to the interface at the point ). The variable # measures
the angle between the z-axis and a line parallel to 7, as shown in Fig. (C.1). The line P @ is parallel to
n and has length u. The distance s measures the arclength along the interface, from a reference point
(star symbol) to point Q). The vector E(s) is the displacement from the origin to the point Q. It is clear
that the quantities n, 7, R and 6 associated with the point @ all depend on the arclength s.

In terms of the variables defined in Fig. (C.1), the cartesian coordinates of the unit vectors 7 and 7
are given by

i = (sin#,—cosf)
. dn .
7= = (—cosf,—sind) (C.7)

The coordinates of P are thus expressed in terms of u and 6 as

x = = Ry(s)+uny =Ry(s)+usind
y = Ry(s)+un, = Ry,(s) —ucosf (C.8)

Moreover, 6 and s are related via the local interface curvature k at @ according to

de
=—— C.9
K== (C.9)
Using the above definition, the transformation of quantities between (z,y) and (u, s) can now be made.

Writing a the order parameter as ¢(s(x,y),u(x,y)) and using the chain rule gives

99 9s  Ou 3¢
ox ox Ox Os
_ (C.10)
99 9s  du 8¢
dy dy Oy u
———
J
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* P (x,y)

7(s)

X

Figure C.1: Representation of a point P with cartesian coordinates (z,y) in curvi-linear co-ordiates (u, s)
which are attached to the interface represented by the green curve. The vector 7 is the unit normal to
the interface at point @ and w is the length of @ P (dotted line), which is parallel to 7i. The vector 7 is
perpendicular to n and tangential to the interface at point . The distance s measures arclength along
the interface, from a reference point (star symbol) to Q. The variable 6 is the angle between the z-axis
and a line parallel to 7. Other details described in the text

Where J is the Jacobian matrix of the transformation from (u,s) derivatives to (z,y) derivatives. The
inverse transformation is similarly defined via J~! as

9¢ 9z y ¢
s Os Os ox
= (C.11)
94 9z Oy 94
ou ou  Ou oy
[ —
J-1
Using Eq. (C.8) and (C.9) the partials dz and dy with respect to ds and du are found to be
dR,
dr = |—— —ukcosf|ds+sind du
ds
iR
dy = % — uk sin 91 ds — cost du (C.12)
s
Using Egs. (C.12) gives
df: —uk cosf %—umsin&
J = (C.13)
sinf —cosf

It will be noted that dﬁ/ ds = 7. This is easy to see in the special case where the vector R rotates in
a circle as a constant angular velocity. The more general case follows analogously. Using this result,
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Inverting J~1, recalling that that 7 has unit length and using Eq. (C.10) gives,

a% 1 cos 0% + {7y — uksinf} 3%
{ =T (C.14)
a% (I + us) sin 0% — {#, —urcos0} 2
which, in compact notation, becomes
1 0
V=n-—+ 7 (C.15)

9
ou 14+ uk 83
9

It it useful for the analysis of section (A.9) to apply Eq. (C.15) to the case of a vector function
f = falu, )i+ f+(u, s)7. In that case, Eq. (C.15) can be written as

v-f o= (ﬁ f) 1+uﬁ{s(%.f)_f.aﬁ}
R Y o
where 0,7 = 0,0 997 = —rn has been used in the second line of Eq. (C.16). Scaling u according to

& =u/Ws, s by 0 = s/Wy/e and performing the expansion, (1 +ur)™' =1— e +--- (see Egs. (A.36))
gives,

V.f= ¢[ (7 7) + {0, (7-F) +wi-T}] +0) (C.17)

This equation is useful in deriving Eqgs. (A.9) and (A.10) by replacing f by V and ¢V, respectively.
Tt is also useful to express the quantity V¢ /|Vé| in terms of 7. Starting with Eq. (C.15), re-scaling
distances as was done above and once again expanding (1 + e£R) gives

Vo =n €2 70(e
i (14+0O(e?)) + 70(e) (C.18)

where the minus sign is introduced so that the normal vector points from solid to liquid in the convention
when ¢ > ¢r.

C.3 Newton’s Method for Non-Linear Algebraic Equations: Sec-
tion (6.9.5)

Let f(z) be come non-liner function of 2. The simplest way to solve the equation
flz)=0 (C.19)

is by Newton’s iteration method. The idea is to make a first guess at the solution, called x,,. Assuming
Z, is sufficiently close to the actual solution, then a first order Taylor expansion of f(x) about x = x,
can be used to estimate the actual solution by finding where the linear approximation to f(z) is zero.
Specifically, solving f(xn41) = @n + f/(@n)(@ny1 — xn) = 0 yields zp41 = 2 — f(z0)/f (nn) = G(zn),
where the prime denotes differentiation. Substituting z,1; back on the right hand side of the previous
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equation gives gives a refined estimate of the actual solution, i.e., ;42 = G(zp+1). This procedure is
repeated until the estimates stop changing, to some accuracy.
The extension of Newton’s method to two non-linear equations

f1(x,y) =0
fa(z,y) =0 (C.20)

is precisely analogous to the 1D case. Let the initial guess of the solution be Z, = (z,.y,). The functions
fi(z,y) and fo(x,y) are expanded to linear order about (z,,y,), yielding,

fl(xna yn) + 8ggf1($n7yn)($n+1 - xn) + 8yf1(xnayn)(?/n+1 - yn)) =0
f2($n7yn) + 8a:f2(xnvyn)(xn+1 - xn) + 8yf2(‘rn7yn)(yn+1 - yn)) =0 (021)

Solving Egs. (C.21) gives
Tn+1 In 1 ayf?(xm yn) - 8yf1(l'n>yn) fl(xn,yn)
Yn+1 Yn TnrYn azf2(l‘nayn> _aa:fl(l'n>yn) f2(.’L‘n7yn)

where W (zy,, yn) = Ou f1(@n, Yn) Oy f2(Tn, Yn) =0y f1(Z0n, Yn) Op f2(Tn, Yn). Eq. (C.22) is of the form &, 41 =
G(2,,), which can be iterated until iterates stop changing, to a sufficient accuracy.
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