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L’hymne Nationale de Canada:

Au Canada, on dort en pyjamas

En Italie, on dort en bikini

Aus Etats Unis on dort sans habille

Au Canada, on dort en pyjamas

En Angletgerre, on dort les fesses en l’air!



Ultrabrief Summary:

We constructed AdS/CFT dual of 2+1 dim ABJM theory,
deformed by mass-like terms for the chiral matter fields–
(Framework in which Jafferis, 1012.3210 developed
F-maximization thm.)

Gravity dual gives valid description for large N and strong coupling:

N >> k5 λ = N/k fixed, large

Usually QFT methods are impotent at strong coupling, but in this
case, the Free Energy can be calculated using localization.

We calculate the same Free Energy in the gravity dual and thus
obtain an unusually detailed match between gravity dual ↔ QFT
(n.b. conformal symmetry is broken).



Usual ideas of AdS/CFT apply in this application:
i) symmetries of bulk gravity and boundary gauge theories match.

ii) map between classical fields of bulk thy. and gauge invariant
composite operators of the QFT.

iii) find classical soltn. of gravity thy. with AAdS metric and other
fields.

iv) asymptotics at AdS bdy. determine sources and vets. for QFT
operators.

But ∃ many complications and subtleties:

a) ABJM thy. has hidden symmetries and subtle dynamics
To be described with poetic license. *PL*

b) the deformed thy. is on Euclidean S3, so we need Euclidean
signature SG dual.



c) For Chern-Simons level k = 1, 2, undeformed ABJM has hidden
enhanced N = 6 → N = 8 SUSY. Deformation breaks
N = 8 → N = 2. So we search for gravity dual as a consistent
N = 2 truncation of gauged N = 8. [De Wit + Nicolai] The
operator map involves issues of SO(8) triality.

d) In the end we find simple truncation and a classical solution
involving metric and three complex scalars. But m2

scalar = −2/L2,
in the mass range with quantization ambiguity [Breitenlohner +
DZF].

e) In AdS/CFT, Son−shell of the gravity dual is the bridge to the
QFT. But Son−shell diverges! Method of Holographic
Renormalization [Skenderis] determines ∞ counterterms, but we
must add a finite CT to maintain SUSY. Because of alternate
quantization, it is not Son−shell which is the QFT generating
function, but its Legendre transform [Klebanov + Witten].



ABJM thy. and its deformation:
Undeformed ABJM is an N = 6 superconf. Chern-Simons thy.
with product gauge group U(N)k × U(N)−k coupled to 4
bi-fundamental chiral multiplets: Y A(x), χA(x) in 4 of SU(4)

global symmetry (plus conjugates Y †A(x), χ†A(x),).

Write down N = 2 Euclidean U(1)k toy model with one
Y (x), χ(x):

A. Euclidean C-S action on S3 of radius a.

SCS =
ik

4π

∫
d3x

[
εijkAi∂jAk −

√
g(λ†λ+ 2iσD)

]
,

where Ai is gauge potential, σ, D are real scalar auxiliaries, and
χ, χ† are 2-component complex spinors (also auxiliary).
No local degrees of freedom, but a rich dynamics after coupling to
matter fields.



B. Matter action

S1/2 =

∫
d3x
√
g

(
D iY ∗DiY + σ2Y ∗Y + iχ†γ iDiχ+ iχ†σχ− F ∗F

+λT (iσ2)Y ∗χ+ χ†(iσ2)Yλ∗ − DY ∗Y +
3

4a2
Y ∗Y

)
,

Can recognize σ = A4 from dimensional reduction.
The algebra of N = 2 SUSY on S3 is

{Q,Q†} = γ iJi + (1/a)R

The Ji are generators of SU(2)L or SU(2)R of S3.
R is the U(1)R charge with values

RY = 1/2, Rχ = −1/2, RF = −3/2 .



Jafferis found a deformation that breaks N = 2 superconf. to
N = 2 SUSY on S3 with new R-charge R’ = R + T, and T is a
U(1) flavor symmetry under which Y , χ, F carry T = ∆− 1/2.
Deformed action:

S∆ = S1/2 +

∫
d3x
√
g [− 1

a2
(∆− 1

2
)(∆− 3

2
)Y ∗Y

+
1

a
(∆− 1

2
)(χ†χ− σY ∗Y )] .

Curious point: due to SUSY on S3, the coupling constants of the
permutation are fully determined by the deformed R-charges.

Jafferis considered non-abelian and multi-flavor extensions of this
framework:
i. The free energy F (∆j) can be calculated by localization.
ii. F (∆j) is stationary, i.e. ∂F (∆j)/∂∆j = 0 at superconformal
fixed points of the RG-flow.
iii. The stationary point is a maximum [Closset et al, 1205.4142].
This is the principle of F-maximization.



Extension to ABJM with 4 bi-fundamentals Y A

Must assign general R-charges R[Y A] = 1/2 + T [Y A].
Consistent with constraint

∑
A R[Y A] = 2 due to quartic

superpotential W = Tr(Y 1Y 2Y 3Y 4). *PL*

To accomodate this, choose 3 traceless diagonal 4× 4 matrices Tα

(i.e. in Cartan of SU(4))

T 1 = diag(1, 1,−1,−1)

T 2 = diag(1,−1, 1,−1)

T 3 = diag(1,−1,−1, 1).

Then

R[Y A] =
1

2
+ (δ1T

1 + δ2T
2 + δ3T

3)AA

The matrices Tα define 3 independent flavor U(1)′s that mix with
the canonical U(1)R in the deformed theory.



Define 3 bilinear Bose and Fermi operators:

OαB = Tr(Y †TαY ) scale dim 1

OαV = Tr(χ†Tαχ− Y †TαY σ) scale dim 2

Lagrangian of deformed ABJM:

L∆ = L1/2 +
1

a2

∑
α

(δα + δ1δ2δ3/δα)OαB

+
1

a

∑
α

δαOαF . ∗PL∗

The Free Energy of the deformed ABJM theory is calculated by
matrix model methods at large N. [Jafferis et al 1103.1181]:

F =
4
√

2πN3/2

3

√∏
A

R[Y A] ,



The gravity dual of ABJM

Dual of unperturbed ABJM, for k = 1 is AdS4 × S7 soltn. of 11D
SG. Its low energy limit is gauged N = 8, d = 4 SG.

So we look for the dual of deformed ABJM as a consistent N = 2
truncation of N = 8. The truncation should contain:
i) 3 cx. scalars zα(ρ, x) whose Re and Im parts are dual to the
QFT ops. OαB(x) and OαF (x), plus
ii) 4 bulk gauge fields dual to canonical R-current Rµ and 3 U(1)
currents Jαµ .

Thus we look for an N = 2 truncation of N = 8 with:
i) gravity multiplet gµν , ψ)µα=1,2, A0

µ, plus

ii) 3 abelian vector multiplets: zα, χα, Aαµ.



An elaborate SO(8) group theory argument =⇒ operator map:

O1
B + iO1

F ←→ Σ1234 , O1
B − iO1

F ←→ Σ5678 ,

O2
B + iO2

F ←→ Σ1256 , O2
B − iO2

F ←→ Σ3478 ,

O3
B + iO3

F ←→ Σ1278 , O3
B − iO3

F ←→ Σ3456 .

Σabcd(x) are anti-sym 4th rank self-dual tensors of SO(8).

We then set

Σ1234 = z1, Σ5678 = z̃1 ,

Σ1256 = z2 Σ3478 = z̃2 ,

Σ1278 = z3, Σ3456 = z̃3 ,



Find very simple N = 2 truncation deduced from full N = 8
results of De Wit + Nicolai:

S =
1

8πG4

∫
d4x
√
−g

[
1

2
R −

3∑
α=1

|∂µzα|2

(1− |zα|2)2

+
1

L2

(
−3 +

3∑
α=1

2

1− |zα|2

)]
,

1. Scalar kinetic action is Kähler σ-model action on 3-copies of
H2= Poincaré disc. (Known as stu model.)

2. Potential V (|zα|) gives conformal value of scalar mass
m2 = −2/L2.

3. The fields zα can have two alternate quantizations which means
that Rezα and Imzα can be sources for QFT ops. of scale dim. 1
or 2, as we need.



.

S =
1

8πG4

∫
d4x
√
−g

[
1

2
R −

3∑
α=1

|∂µzα|2

(1− |zα|2)2

+
1

L2

(
−3 +

3∑
α=1

2

1− |zα|2

)]
,

4. Bulk gauge field actions can be found, but not needed because
the physics of interest is captured by classical solutions involving
only gµν(ρ) and zα(ρ).

5. The dynamics of 3 zα fields is uncoupled! Since @ vectors, we
effectively have an N = 1 SG theory. Can express V (z , z̃) in terms
of holomorphic W (zα) using standard relation

V = eK
(
∇αW Kαβ̄∇β̄W̄ − 3WW̄

)
.

We find W = (1 + z1z2z3)/L. Curious that V is uncoupled, but
W is coupled. The BPS eqtns. will be coupled!



Digression on Euclidean SUSY

It is well known that in Euclidean SUSY, ”formally conjugate”
(Weyl) fermions ψ and ψ∗ are not ”actually” cx. conjugate, but
independent.

The reason is that their trfs under the Euclidean group
SO(4) = SU(2)L × SU(2)R are not conjugate. Instead, ψ → Uψ
and ψ̃ ≡ iσ2ψ

∗ → V ψ̃, where U, V are independent matrices of
SU(2).

But SUSY trfs. relate formally conjugate fermions to formally
conjugate bosons, e.g.

δψ = γ i∂iz ε̃ δψ̃ = γ i∂i z̃ε .

Therefore, formally conjugate bosons need not be actually
conjugate. In Euclidean SG, even the metric tensor gµν can be
complex!



S3-sliced domain walls from BPS eqtns.

We use two different coord. systems, both with explicit S3 factors.

1. ds2 = L2(dρ2 + e2A(ρ)dΩ2
3)

2. ds2 = L2e2B(r)(dr2 + r2dΩ2
3) ,

1. AdS bdy. at ρ =∞, simplest for AdS/CFT physics.
2. conformally flat. BPS eqtns. can be solved by Mathematica.

Euclidean reference solution– maximally symmetric H4:

ds2 = L2(dρ2 + sinh2 ρdΩ2
3) r = tanh(ρ/2)

=
4L2

(1− r2)2
(dr2 + r2dΩ2

3) , ← bdy.atr = 1



Please admire our BPS eqtns.!

δψµ =

(
∂µ +

1

4
ωµ

abσ[aσ̄b] +
1

4

3∑
α=1

z̃α∂µz
α − zα∂µz̃

α

1− zαz̃α

)
ε

+
1 + z1z2z3

2L
∏3

β=1

√
1− zβ z̃β

σµε̃ = 0 ,

δψ̃µ =

(
∂µ +

1

4
ωµ

abσ̄[aσb] −
1

4

3∑
α=1

z̃α∂µz
α − zα∂µz̃

α

1− zαz̃α

)
ε̃

+
1 + z̃1z̃2z̃3

2L
∏3

β=1

√
1− zβ z̃β

σ̄µε = 0 ,

δχα = σµ∂µz
αε̃−

(1− zαz̃α)
(
zα + z̃1z̃2z̃3/z̃α

)∏3
β=1

√
1− zβ z̃β

ε = 0 ,

δχ̃α = σ̄µ∂µz̃
αε−

(1− zαz̃α)
(
z̃α + z1z2z3/zα

)∏3
β=1

√
1− zβ z̃β

ε̃ = 0 .

These highly coupled eqtns. have a remarkably simple solution.



The solution

zα(r) = cαf (r) f (r) =
(1− r)2

1 + c1c2c3r 2

z̃α(r) = −c1c2c3

cα
f (r)

ds2 =
4L2(1 + c1c2c3)(1 + c1c2c3r

4)

(1 + c1c2c3r 2)2

dr 2 + r 2dΩ2
3

(1− r 2)2
.

Features:
i) common radial function for all zα z̃α

ii) solution has 3 arbitrary complex constants cα.

iii) so z̃ 6= ζ∗, as advertised.

iv) metric is conformal to H4

v) we check that BPS soltns. also satisfy Lagrangian EOM’s and
we find Killing spinors.



Results and Interpretation

1. Change radial variable r = 1− 2e−ρ + 2e−2ρ + . . . .
Find expected bdy. behavior for scalar mass m2 = −2/L2:

zα(ρ) = aαe−ρ + bαe−2ρ + . . .

z̃α(ρ) = ãαe−ρ + b̃αe−2ρ + . . . .

with

aα =
4cα

1 + c1c2c3
aα bα = −8cα(1− c1c2c3)

(1 + c1c2c3)2

ãα = −c1c2c3

c2
α

b̃α = −c1c2c3

c2
α

bα .



In ”normal” AdS/CFT, dominant asymptotic terms, aα, ãα would
be sources for the 3+3 =6 QFT ops. OαB , OαF .

Not correct here b/c the 3 OαB have scale dim. 1,
but the 3 OαF have scale dim. 2 .

From scaling under ρ→ ρ+ δρ, we see that aα, ãα can be sources
for dim. 2 ops., and bα, b̃a can be sources for dim. 1 ops.

Since the OαF are pseudoscalar, we take aα − ãα as their sources.
This suggests that bα + b̃a are sources for the scalar OαB .



A more precise argument
Equivalent to requirement of SUSY for the source term *PL*∫

...e
∫
d3x(gαOα

B +fαOα
F )

Result: If fα ∼ aα, ãα are the sources for OαF , then

gα ∼ bα − ã1ã2ã3

ãα
+ b̃α − a1a2a3

aα

are the sources for OαB . Can rewrite a, ã, b, b̃ in terms of the cα
parameters of the soltns. Then compare with deformation of
ABJM ∫

d3x

(
δα + δ1δ2δ3/δα)OαB +

∑
α

δαOαF

)
to identify

δα = k
cα + c1c2c3/cα

1 + c1c2c3
.

Finally we have a detailed correspondence between parameters of
the QFT and parameters of the SG solution.



Where are we in the AdS/CFT story?

i) discussed the relevant structure of the N = 2 bulk theory .
ii) presented and solved the BPS eqtns. to find zα(ρ), gµν(ρ).
iii) new SUSY argument to determine sources of OαB , OαF .
iv) What is left?
Son−shell Bridge between QFT and its gravity dual. It is divergent
and requires Holographic Renormalization, a systematic procedure
to cancel divergences by counterterms which are:
i) local invariants formed from bulk fields at the cutoff ρ = ρ0.
ii) UNIVERSAL– they must cancel ∞’s of all soltns of EOMs, not
just the BPS soltns.
iii) Procedure leaves open the possibility of finite CT’s
Important because procedure is not always compatible with SUSY!



A SUSY Counterterm
For flat-sliced domain walls in general N = 1 Kähler SG model:

ds2 = L2(dρ2 + e2A(ρ)dx idx i ) zα(ρ, x i )→ zα(ρ) .

Lorentzian sig. action + partial integration (a la Bogomolny)

S =

∫
d4x
√
−g
[

1

2
R − Kαβ̄∂µz

α∂µz̄
β̄ − V (z , z̄)

]
V = |∇W |2 − 3|W |2 .

Find sum of quadratic factors + surface term:
Quadratic factors are BPS eqtns:

∂rz
α = eK/2

√
W /W̄ ∇αW̄

∂rA = −eK/2|W | .

Surface term:

−
∫

d4x2eK/2|W | .



Surface term can be dropped for some purposes, but because fields
in AdS/CFT fall at definite rate at the bdy. One must include CT:

SSUSY =

∫
d3x(e3AeK/2|W |)ρ=ρo

= =

∫
d3x
√
h

[
1 +

1

2

∑
α

|zα|2 +
1

2
(z1z2z3 + c .c .) + . . .

]

The first two terms are conventional ∞ CT’s, but the third is a
new finite CT req’d by SUSY,
Remaining step: The free energy is the Legendre transform of
Son−shell



Finale

Our goal is to match QFT free energy:

F =
4
√

2πN3/2

3

√∏
A

R[Y A] ,

where R[Y 1] = 1
2 + δ1 + δ2 + δ3 ., etc.

We have discussed: zα = cαf (r), z̃α = − c1c2c3
cα

f (r)

and identified δα = k cα+c1c2c3/cα
1+c1c2c3

. The bulk thy. Legendre trf

gives:

F =

√
2πN3/2

3

(1− c2
1 )(1− c2

2 )(1− c2
3 )

(1 + c1c2c3)2

Find perfect 3-parameter match if we take k = 1/2.
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