3D strings: an open and shut case?

Paul K. Townsend

DAMTP, Cambridge University, UK

Based on work with Luca Mezincescu arXiv: 1008.2334, 1008.2775, 1011.5049, 1106.1374, 1111.3384

 $\&$

with Luca Mezincescu and Alasdair Routh to appear

Grisaru-fest, McGill, April 2013

▶ Closed NG string Lagrangian is

$$
L = \oint d\sigma \left\{ \dot{X} \cdot P - \frac{1}{2} e \left[P^2 + (TX')^2 \right] - u X' \cdot P \right\}
$$

 \blacktriangleright Light-cone gauge: $(X^+)' = P'_- = 0$. Eliminate auxiliary fields to get action for zero modes (x, p) and transverse variables (X, P)

$$
L = \dot{x} \cdot p + \oint d\sigma \dot{X} \cdot \mathbf{P} - \frac{1}{2} e_0 \left(p^2 + M^2 \right) - u_0 \oint d\sigma \mathbf{X}' \cdot \mathbf{P}
$$

where $M^2 = \oint d\sigma [\mathbf{P}^2 + (T\mathbf{X}')^2]$.

→ Quantize to get spectrum $M^2 = (4\pi T)[N + \tilde{N} - a]$ subject to level-matching constraint $N = \tilde{N}$.

▶ Lorentz invariance is not manifest so there is possible Lorentz anomaly. In fact (GGRT)

$$
\left[J^{i-}, J^{j-}\right] = \sum_m \left(\cdots\right)_{m}^{ij} \Delta_m
$$

Must be zero, but there are **two** ways this can happen:

→ Standard way: $\Delta_m = 0$. Satisfied iff $D = 26$ and $a = 2$. Leads to critical string.

 \rightarrow Non-standard way: $(\cdots)^{ij}_m = 0$. Satisfied if $D = 3$. But spectrum contains particles of *irrational spin*.

 $\rightarrow \delta S|_{\text{on-shell}} = 0 \rightarrow$ Neumann or Dirichlet bcs Dirichlet \Rightarrow Dp-branes. e.g. D0-branes:

 \rightarrow can't use light-cone gauge (X^0, X^1) mode expansions differ). Use Arvis gauge: $P_0 + TX_1' = p_0 \& P_1 + TX_0' = 0$, to get

$$
L = \dot{x}^0 p_0 + \oint d\sigma \dot{X} \cdot \mathbf{P} + \frac{1}{2} e_0 \left(p_0^2 - M^2 \right)
$$

where $M^2 = \oint d\sigma [\mathbf{P}^2 + (T\mathbf{X}')^2]$, as for closed string (but open string mode expansion).

▶ Rotation anomaly unless

\n
$$
\left\{\n \begin{array}{ll}\n \text{either} & D=26 & \& a=1 \\
\text{or} & D=3\n \end{array}\n \right.\n \quad \text{(Arvis, '83)}
$$

 \rightarrow Poincaré group generated by 3-vectors \mathcal{P}_{μ} and \mathcal{J}_{μ} . Massive UIRs classified by Casimirs

$$
-\mathcal{P}^2 \equiv M^2, \qquad \mathcal{P} \cdot \mathcal{J} \equiv Mh
$$

M is mass and h is "relativistic helicity". Define $|h|$ to be "spin".

 \rightarrow 2h $\notin \mathbb{Z}$ \rightarrow Anyon (by 3D spin/statistics theorem)

 \rightarrow 2h $\notin \mathbb{Z}$ but $4h \in \mathbb{Z}$ \Rightarrow Semion

 \rightarrow Spin not defined if $M^2 = 0$, but still 3 UIRs: Boson & Fermion, and "infinite spin" (analog of 4D "continuous spin")

 \rightarrow Covariant action for particle of helicity h is

$$
I = \int dt \left\{ (\dot{X}^{\mu} P_{\mu} - \frac{1}{2} e \left(P^2 + M^2 \right) \right\} + h I_{LWZ}
$$

Lorentz-Wess-Zumino term constructed from the closed super-Poincaré invariant 2-form $\left(P^2\right)^{-\frac{3}{2}} \varepsilon^{\mu\nu\rho} P_\mu \, dP_\nu \wedge dP_\rho$ (Shonfeld '81)

 \rightarrow Light-cone gauge quantization \rightarrow one-component KG-equation but in terms of coordinates that are non-local functions of X

 \rightarrow Covariant equation for $h \neq 0$ requires an infinite comnponent field (Jackiw & Nair '91, Plyuschay, '91). How do we find it by covariant quantization of the particle? Obviously harder for string!

 \rightarrow Green-Schwarz superstring action exists for $D = 3, 4, 6, 10$, and $\mathcal{N} = 1, 2$. Focus on $D = 3$ and $\mathcal{N} = 2$. Quantize in light-cone gauge \rightarrow bosonic annihilation operators (a_n, \tilde{a}_n) and fermionic annihilation operators $(\xi_n, \tilde{\xi}_n)$.

→ The following 'odd' operator plays a crucial role:

$$
\equiv \propto \sum_n \left(a_n \xi_n^{\dagger} + a_n^{\dagger} \xi_n \right) + \sum_n \left(\tilde{a}_n \tilde{\xi}_n^{\dagger} + \tilde{a}_n^{\dagger} \tilde{\xi}_n \right) .
$$

 Ξ squares to the even mass-squared operator M^2 (using levelmatching constraint), so it determines spectrum.

 $\rightarrow \equiv$ commutes with super-helicity Casimir \Rightarrow spectrum is super-Poincaré invariant \Rightarrow no super-Poincaré anomalies.

 \rightarrow 2 fermonic zero modes \rightarrow 4 massless ground states at level $N = 0$: 2 bosons and 2 fermions.

 \rightarrow All other states are massive. At level $N = 1$ we get 4 copies of the scalar supermultiplet with helicities $(-1/2, 0, 0, 1/2)$.

 \rightarrow At level $N = 2$ get 8 copies of scalar supermultiplet plus 4 copies of spin-2 supermultiplet $(1, 3/2, 3/2, 2)$ and its parity conjugate $(-2, -3/2, -3/2, -1)$.

 \rightarrow At level $N = 3$ get another 8 copies of the scalar supermultiplet. But remaining 28+28 supermultiplets all have irrational helicities.

Equivalence with Ramond string (RMT)

 \rightarrow The $D = 10$ GS string is equivalent to the RNS string with GSO projection. Proof uses light-cone gauge plus Spin(8) triality.

 \rightarrow The $D = 3$ GS string is equivalent to the Ramond string. Proof uses light-cone gauge plus Spin(1) triviality.

 \rightarrow Analog of \equiv operator is the Ramond string supercharge Q. Same mass spectrum

→ Also same helicities. So 3D Ramond string has hidden 3D susy!

▶ Also true for open strings with free ends. Get closed string spectrum by taking $L \otimes R$ and imposing level-matching. [Other b.c.s under investigation]

 \rightarrow Parity-preserving $\mathcal{N} = 2$ superparticle has action

$$
I = \int dt \left\{ \left(\dot{X}^{\mu} + i \bar{\Theta}_a \Gamma^{\mu} \dot{\Theta}_a \right) P_{\mu} - i Z \varepsilon^{ab} \bar{\Theta}_a \dot{\Theta}_b - \frac{1}{2} e \left(P^2 + M^2 \right) \right\}
$$

 \rightarrow Z is central charge. Unitarity of quantum theory requires BPS bound $M \geq |Z|$. Saturation, $M = |Z|$, gives short BPS semion supermultiplet of helicities

$$
\left(-\frac{1}{4},-\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)
$$

➸ Consistent with semion statistics of 3D matrix-model D0 branes (Pedder, Sonner and Tong)

 $\rightarrow \mathcal{N}$ = 2 closed strings have left-moving fermions ψ_L and right-moving fermions ψ_R . Does ψ_L commute or anti-commute with ψ_R ?

→ If we want no interactions between left-movers and right-movers then we want $[\psi_L, \psi_R] = 0$, i.e. $Z_2 \times Z_2$ grading. Otherwise, for $\{\psi_L, \psi_R\} = 0$ we get statistical interactions from exclusion principle.

→ To get IIA string from 11D we need to put all fermions into one 32-cpt spinor. This implies $\{\psi_L, \psi_R\} = 0$ and hence Z_2 grading.

→ So M-theory unification of string theory requires equivalence of two types of grading. Are they equivalent?

 \rightarrow Usually, $Z_2 \times Z_2$ grading gives same results as Z_2 grading (Zumino, Van Nieuwenhuizen).

→ But not always! For heterotic string ghosts the two types of grading (Lorentz vs ghost statistics) give different answers for the the anomalies. Only the $Z_2 \times Z_2$ grading gives the expected results (Grisaru, Mezincescu and Townsend, 1986).

The End

- **▶ MARC, MANY THANKS FOR YOUR FRIENDSHIP OVER THE YEARS**
- ➸ THANKS FOR SOME MEMORABLE COLLABORATIONS., AND
- **▶ BEST WISHES FOR THE FUTURE!**