3D strings: an open and shut case?

Paul K. Townsend

DAMTP, Cambridge University, UK

Based on work with Luca Mezincescu arXiv: 1008.2334, 1008.2775, 1011.5049, 1106.1374, 1111.3384

&

with Luca Mezincescu and Alasdair Routh to appear

Grisaru-fest, McGill, April 2013

➤ Closed NG string Lagrangian is

$$L = \oint d\sigma \left\{ \dot{X} \cdot P - \frac{1}{2}e \left[P^2 + (TX')^2 \right] - uX' \cdot P \right\}$$

▶ Light-cone gauge: $(X^+)' = P'_- = 0$. Eliminate auxiliary fields to get action for zero modes (x, p) and transverse variables (X, P)

$$L = \dot{x} \cdot p + \oint d\sigma \dot{\mathbf{X}} \cdot \mathbf{P} - \frac{1}{2}e_0\left(p^2 + M^2\right) - u_0 \oint d\sigma \mathbf{X}' \cdot \mathbf{P}$$

where $M^2 = \oint d\sigma [\mathbf{P}^2 + (T\mathbf{X}')^2].$

▶ Quantize to get spectrum $M^2 = (4\pi T)[N + \tilde{N} - a]$ subject to level-matching constraint $N = \tilde{N}$.

➤ Lorentz invariance is not manifest so there is possible Lorentz anomaly. In fact (GGRT)

$$\left[J^{i-}, J^{j-}\right] = \sum_m \left(\cdots\right)_m^{ij} \Delta_m$$

Must be zero, but there are **two** ways this can happen:

▶ Standard way: $\Delta_m = 0$. Satisfied iff D = 26 and a = 2. Leads to critical string.

▶ Non-standard way: $(\cdots)_m^{ij} = 0$. Satisfied if D = 3. But spectrum contains particles of **irrational spin**.

► $\delta S|_{on-shell} = 0 \Rightarrow$ Neumann or Dirichlet bcs Dirichlet \Rightarrow Dp-branes. e.g. D0-branes:

➤ can't use light-cone gauge (X⁰, X¹ mode expansions differ).
Use Arvis gauge: P₀ + TX'₁ = p₀ & P₁ + TX'₀ = 0, to get

$$L = \dot{x}^0 p_0 + \oint d\sigma \, \dot{\mathbf{X}} \cdot \mathbf{P} + \frac{1}{2} e_0 \left(p_0^2 - M^2 \right)$$

where $M^2 = \oint d\sigma [\mathbf{P}^2 + (T\mathbf{X}')^2]$, as for closed string (but open string mode expansion).

▶ Poincaré group generated by 3-vectors \mathcal{P}_{μ} and \mathcal{J}_{μ} . Massive UIRs classified by Casimirs

$$-\mathcal{P}^2 \equiv M^2 \,, \qquad \mathcal{P} \cdot \mathcal{J} \equiv Mh$$

M is mass and h is "relativistic helicity". Define |h| to be "spin".

▶ $2h \notin \mathbb{Z} \Rightarrow$ Anyon (by 3D spin/statistics theorem)

▶ $2h \notin \mathbb{Z}$ but $4h \in \mathbb{Z}$ \Rightarrow Semion

▶ Spin not defined if $M^2 = 0$, but still 3 UIRs: Boson & Fermion, and "infinite spin" (analog of 4D "continuous spin") \blacktriangleright Covariant action for particle of helicity h is

$$I = \int dt \left\{ (\dot{X}^{\mu} P_{\mu} - \frac{1}{2} e \left(P^{2} + M^{2} \right) \right\} + \frac{h}{I_{LWZ}}$$

Lorentz-Wess-Zumino term constructed from the closed super-Poincaré invariant 2-form $(P^2)^{-\frac{3}{2}} \varepsilon^{\mu\nu\rho} P_{\mu} dP_{\nu} \wedge dP_{\rho}$ (Shonfeld '81)

▶ Light-cone gauge quantization \rightarrow **one-component** KG-equation but in terms of coordinates that are *non-local* functions of X

► Covariant equation for $h \neq 0$ requires an infinite component field (Jackiw & Nair '91, Plyuschay, '91). How do we find it by covariant quantization of the particle? Obviously harder for string! → Green-Schwarz superstring action exists for D = 3, 4, 6, 10, and $\mathcal{N} = 1, 2$. Focus on D = 3 and $\mathcal{N} = 2$. Quantize in light-cone gauge \rightarrow bosonic annihilation operators (a_n, \tilde{a}_n) and fermionic annihilation operators $(\xi_n, \tilde{\xi}_n)$.

➤ The following 'odd' operator plays a crucial role:

$$\Xi \propto \sum_n \left(a_n \xi_n^{\dagger} + a_n^{\dagger} \xi_n \right) + \sum_n \left(\tilde{a}_n \tilde{\xi}_n^{\dagger} + \tilde{a}_n^{\dagger} \tilde{\xi}_n \right) \,.$$

 \equiv squares to the even mass-squared operator M^2 (using levelmatching constraint), so it determines spectrum.

⇒ \equiv commutes with super-helicity Casimir \Rightarrow spectrum is super-Poincaré invariant \Rightarrow no super-Poincaré anomalies.

▶ 2 fermonic zero modes \Rightarrow 4 massless ground states at level
N = 0: 2 bosons and 2 fermions.

▶ All other states are massive. At level N = 1 we get 4 copies of the scalar supermultiplet with helicities (-1/2, 0, 0, 1/2).

At level N = 2 get 8 copies of scalar supermultiplet plus 4 copies of spin-2 supermultiplet (1, 3/2, 3/2, 2) and its parity conjugate (-2, -3/2, -3/2, -1).

At level N = 3 get another 8 copies of the scalar supermultiplet. But remaining 28+28 supermultiplets all have irrational helicities.

Equivalence with Ramond string (RMT)

The D = 10 GS string is equivalent to the RNS string with GSO projection. Proof uses light-cone gauge plus Spin(8) triality.

The D = 3 GS string is equivalent to the Ramond string. Proof uses light-cone gauge plus Spin(1) triviality.

▶ Analog of \equiv operator is the Ramond string supercharge Q. Same mass spectrum

➤ Also same helicities. So 3D Ramond string has hidden 3D susy!

Also true for open strings with free ends. Get closed string spectrum by taking $L \otimes R$ and imposing level-matching. [Other b.c.s under investigation]

▶ Parity-preserving $\mathcal{N} = 2$ superparticle has action

$$I = \int dt \left\{ \left(\dot{X}^{\mu} + i\bar{\Theta}_{a} \Gamma^{\mu} \dot{\Theta}_{a} \right) P_{\mu} - i \mathbf{Z} \varepsilon^{ab} \bar{\Theta}_{a} \dot{\Theta}_{b} - \frac{1}{2} e \left(P^{2} + M^{2} \right) \right\}$$

► Z is central charge. Unitarity of quantum theory requires BPS bound $M \ge |Z|$. Saturation, M = |Z|, gives short BPS semion supermultiplet of helicities

$$\left(-\frac{1}{4},-\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$$

Consistent with semion statistics of 3D matrix-model D0branes (Pedder, Sonner and Tong) ► $\mathcal{N} = 2$ closed strings have left-moving fermions ψ_L and right-moving fermions ψ_R . Does ψ_L commute or anti-commute with ψ_R ?

▶ If we want no interactions between left-movers and right-movers then we want $[\psi_L, \psi_R] = 0$, i.e. $Z_2 \times Z_2$ grading. Otherwise, for $\{\psi_L, \psi_R\} = 0$ we get statistical interactions from exclusion principle.

► To get IIA string from 11D we need to put all fermions into one 32-cpt spinor. This implies $\{\psi_L, \psi_R\} = 0$ and hence Z_2 grading.

➤ So M-theory unification of string theory requires equivalence of two types of grading. Are they equivalent?

▶ Usually, $Z_2 \times Z_2$ grading gives same results as Z_2 grading (Zumino, Van Nieuwenhuizen).

▶ But not always! For heterotic string ghosts the two types of grading (Lorentz vs ghost statistics) give different answers for the the anomalies. Only the $Z_2 \times Z_2$ grading gives the expected results (Grisaru, Mezincescu and Townsend, 1986).

The End

- ► MARC, MANY THANKS FOR YOUR FRIENDSHIP OVER THE YEARS
- ► THANKS FOR SOME MEMORABLE COLLABORATIONS., AND
- ►> BEST WISHES FOR THE FUTURE!