PHYS 514 GENERAL RELATIVITY AND COSMOLOGY 2018 READING and PROBLEM SET 1

READING: Textbook, Chapter 1 (Sections 1 - 7), Chapter 2 (Sections 1 - 3)

PROBLEMS (due Jan. 16, 2018, in class):

N.B. These problems are intended to make sure you have an adequate background in special relativity.

- 1. Carroll, Chapter 1, Problem 1.
- 2. Carroll, Chapter 1, Problem 3.
- 3. Carroll, Chapter 1, Problem 5.

4. a) When a photon scatters off a charged particle which is moving with a speed very nearly that of light, the photon is said to have undergone an *inverse Compton* scattering. Consider an inverse Compton scattering in which a charged particle of rest mass m and total mass-energy (as seen in the lab frame) $E \gg m$ collides head-on with a photon of frequency ν ($\nu \ll m$, in units where Planck's constant is set to 1). What is the maximum energy which the particle can transfer to the photon?

b) If space is filled with black-body radiation of temperature 3^{o} K and contains cosmic ray protons of energies up to 10^{20} eV, how much energy can a proton of energy 10^{20} eV transfer to a 3^{o} K photon?

5. Derive a formula for the mass M of a decaying particle in terms of the masses m_1 and m_2 , energies E_1 and E_2 , momenta p_1 and p_2 of the decay products, and the opening angle θ between the two tracks in the laboratory frame.

6. The action of a non-relativistic point particle is

$$S_{nr} = \int \frac{1}{2}mv^2 dt$$

where m is the mass of the particle, v is its three velocity, and t is time.

- a) Using the variational principle, derive the resulting equation of motion.
- b) Consider now the following action for a point particle moving along a world line C

$$S = m \int d\tau$$

where as before m is the mass, but now τ is the proper time along the world line, and the integral is along the world line. Derive the resulting equation of motion and show that in the non-relativistic limit $v \ll 1$ you recover the action and equation of motion in the non-relativistic case.