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1. (5 pts) Consider a variant of the Pound-Rebka experiment. An experimenter on a tower of height h above
the surface of the earth lets a ball of mass m fall to the ground from rest. At the surface, the total energy
is ”magically“ transformed into energy of a single photon which travels back up to the experimenter, where
the energy is transformed back to rest mass. Show that if not for the gravitational redshift, you could
construct a perpetual motion machine (a machine from which you could extract and arbitrary amount of
energy). What happens if you take gravitational redshift into account?

Solution

The easiest way to solve this is to consider what happens to the rest mass after each full cycle, with and
without redshifting. First, without redshifting. We assume a static gravitational field throughout.

Initially, the object at the top has a total energy

Etop = m0c
2 +m0gh

Where m0 corresponds to the mass of the object being dropped at the start of the first cycle. We wish to
see how this mass evolves. When the mass reaches the bottom, conservation of energy tells us that

Ebottom = Etop = m0c
2 +m0gh

= hν = Eγ

Where in the second line we have equated the energy to that of a photon. Without redshifting, the frequency
of the photon doesn’t change between the bottom and the top. Thus, when the photon reaches the top and
changes back into an object with rest mass energy equal to hν, we get a new total energy at the top of

E′top = m1c
2 +m1gh

Where m1 is the new mass of the object formed by this

m1c
2 = hν = m0(c2 + gh)

m1 = m0

(
1 +

gh

c2

)

Thus, the mass of the object has increased by a factor of gh/c2, giving the system more energy than it
initially started with! This is the signature of a perpetual motion machine, as our new energy at the top is
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E′top = m0c
2 + 2m0gh+m0

(gh)2

c2
> Etop

Lets look at the case with gravitational redshift. The energy at the top and the bottom is still the same, as

Etop,red = m0c
2 +m0gh

Ebottom,red = m0c
2 +m0gh

= hν0 = Eγ

Where we have distinguished ν0 as the frequency of the photon at the bottom of the tower. Gravitational
redshift affects frequencies by

νf =
ν0

1 + gh
c2

So including this redshifting gives us a photon energy at the top of the tower of

hνf =
hν0

1 + gh
c2

= m1c
2

We know what hν0 was from before, so we can determine the new mass of our created object at the top of
the tower

m1c
2 = m0(c2 + gh)

c2

c2 + gh
= m0c

2

m1 = m0

The energy at the top is now

E′top,red = m1c
2 +m1gh = m0c

2 +m0gh = Etop,red

Clearly, no energy was gained in this process, thus we cannot extract an arbitrary amount of energy by
running this cycle as many times as we want.
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2. (5 pts) Consider the surface of the earth (radius RE) and write down the metric of the surface in some
convenient system of coordinates.

a) Determine the distance between two points both of latitude 45 deg and with longitudes 0 and 12 hours,
respectively (the range of longitudes is from 0 to 24 hours).

b) Do the same calculation if the first point is at latitude 45 deg and longitude 0 hrs, and the second point
lies on the equator at longitude 6 hrs.

N.B. No calculus is required to solve this problem!

Solution

a) The metric on a sphere with (constant) radius RE is

ds2 = R2
Edθ

2 +R2
E sin2(θ)dφ2

The path length is simply s. There is a trick to this section. The path of constant latitude is not the
shortest distance between the two points. In fact, the shortest distance will always be given by the intersect
of a plane containing the origin, the start, and the endpoint with the sphere. This is called the great circle
distance.

For the case of starting and ending points on opposite sides of the sphere (separated by a longitude of 12
hrs), the shortest path is straight over the north pole.

Figure 1: The shortest path length from two opposite ends of the sphere at constant latitude is the distance over
the pole between the two points.

Referring to figure 1, this path length is easily seen to be the portion of the circle subtended by an angle
2θ. Here, θ = π/4, so the length is

s = RE ·
π

2
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Note that a calculation of the constant latitude path yields sθ=const = RE · π√
2
, so going over the pole is

indeed shorter.

b) For this part, it is perhaps easiest to refer to figure 2. Our method for finding this path will be to hold
the ending point fixed (as it lies on the x axis), and rotating the starting point to lie on the z axis.

Figure 2: The distance between the points is easiest to see by rotating about the x axis so that the path starts
on the z axis, and ends on the x.

With this rotation (it is not necessary to actually perform the rotation, as we start and end in the yz plane
with the starting point), we can see that the angle between the two points is π/2 (the angle between the x
and x axis. Therefore, the arc length between the two points is simply

s = RE ·
π

2

The same as in part a.
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3. (15 pts) Consider the flow on a two dimensional plane which for y < 0 is uniform in the y direction. Be-
tween y = 0 and y = 1 the flow is forced to converge towards the y-axis until the density has doubled. The
convergence is smooth. For y > 1 the flow is once again uniform along in y direction, maintaining the larger
density. Consider the coordinate vector fields ∂x and ∂y.

a) Sketch the flow lines.

b) Write down a vector field X which generates this flow.

c) What are the covariant derivatives of ∂x and ∂y with respect to X? Give a geometrical justification of
your answer.

d) What are the Lie derivatives of ∂x and ∂y with respect to X? Give a geometrical justification of your
answer.

Solution
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4. (15 pts) For the 2-dimensional metric

ds2 = r2(dθ2 + sin2(θ)dφ2)

Use the tetrad basis to compute the non-vanishing Riemann tensor elements and the Ricci scalar.

Solution

As usual with tetrad questions, we first define our tetrad basis. It will be

eθ = rdθ eφ = r sin(θ)dφ

Where we note that r is a constant (r = 1 for the unit circle). To find the spin connection we have to take
the differential of our basis. Doing so yields

deθ = 0

deφ = r cos(θ)dθ ∧ dφ

Now to find the spin connection, we use the formula

dea = eb ∧ ωa
b

Writing our two equations, and noting that ωaa = 0 by antisymmetry, we have

deθ = 0 = r sin(θ)dφ ∧ ωθφ
deφ = r cos(θ)dθ ∧ dφ = rdθ ∧ ωφθ

The first line doesn’t help us at all. The second line allows us to identify the only spin connection element
that is nonzero. That is, ωφθ = cos(θ)dφ (by antisymmetry, ωθφ = − cos(θ)dφ). Now, we need to take the
differential in order to determine our Riemann tensor in the tetrad basis. The differentials are

dωφθ = − sin(θ)dθ ∧ dφ
dωθφ = sin(θ)dθ ∧ dφ

The Riemann tensor is defined as Rab = dωa
b + ωa

c ∧ ωc
b, which with only one independent spin connection,

gives us

Rθ
′

φ′ = sin(θ)dθ ∧ dφ

Rφ
′

θ′ = − sin(θ)dθ ∧ dφ

Where we have used primes to distinguish between the tetrad and coordinate basis. We now switch back
to the Riemann tensor in coordinate basis by the formula
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Rρσµν = eρae
b
σR

a
bµν

Where

ebσ = diag(r, r sin(θ)) eρa = diag

(
1

r
,

1

r sin(θ)

)
So our Riemann tensor elements are

Rθφµν = eθθ′e
φ′

φ R
θ′

φ′µν

=

(
1

r

)
(r sin(θ))(sin(θ)dθ ∧ dφ)

Rθφθφ = sin2(θ)

And

Rφθµν = eφφ′e
θ′

θ R
φ′

θ′µν

=

(
1

r sin(θ)

)
(r)(− sin(θ)dθ ∧ dφ)

Rφθθφ = −1

There are then a total of four nonzero components of the Riemann tensor. The Ricci tensor is defined as
Rµν = Rλµλν , so we have

Rθθ = Rφθφθ = 1

Rφφ = Rθφθφ = sin2(θ)

Finally, the Ricci scalar is R = gµνRµν , so we get

R = gθθRθθ + gφφRφφ =
2

r2

Which is just 2 for the unit sphere, just like usual!
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5. (10 pts) You are on a planet located at a distance r1 = 100rs from a black hole with Schwarzschild ra-
dius rs. Your parents travel to another planet located at a distance of r2 = 9/8rs from the same black
hole and spend ten years there (according to their clocks). How much have you aged when your parents
return? You can neglect the time it takes to travel to and from the resort. First, explain in words why the
parents age more or less. Also, derive a formula which gives you the difference in ageing for general r1 and r2.

Solution

The Schwarzschild metric is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dΩ2

Where rs = 2GM . For a stationary test particle, dr = dΩ = 0, and so we can derive the usual gravitational
time dilation formula

t =
τ√

1− rs
r

Where τ is the proper time in the gravitational potential, and t the time measured by an observer at infinity.
We can work through this in two steps now. First, if your parents spend 10 years at rs = 9/8rs, an observer
at infinity would find this time to be

t∞ =
10√

1− 8/9
Yrs = 30 Yrs

Now, we can consider the inverse operation. If an observer at infinity experiences 30 years worth of time,
how much time is that for an observer at a distance r = 100rs?

τ100rs = t∞

√
1− rs

100rs
= 3
√

99 Yrs ≈ 29.8 Yrs

Putting this together we can come up with the general formula for comparing the time between observers
in two different gravitational potentials

τr1 =
√

1− rs/r1
1√

1− rs/r2
τr2 =

(
1− rs/r1
1− rs/r2

)1/2

τr2
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