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1. Use the Einstein Equivalence Principle to calculate the vertical distance light has fallen (equivalently the
distance from the Earth’s surface) after travelling 1km if it is emitted horizontally in vacuum near the
Earth’s surface

Solution
The Einstein equivalence principle states that ”in small enough regions of spacetime, the laws of physics
reduce to those of special relativity; it is impossible to detect the existence of a gravitational field by means
of local experiment“. To determine the physical distance light falls, consider a reference frame at the point
where light is emitted to be in free-fall. Our approach is to determine the distance such a frame has ’fallen‘
over the time spent for light to traverse 1km.

The time taken for light to traverse 1km is simply

∆t = ∆d/c = 103/3 · 108 s ≈ 3 · 10−6 s (1)

The frame is in free fall with respect to a frame fixed on the ground, falling with an acceleration of 9.8 m/s2,
so the velocity of this frame after ∆t is

v = a ·∆t = 3 · 10−5 m/s (2)

Now, to compute the vertical distance light has fallen, we should make use of Lorentz transforms. However,
since v/c = 10−13 <<< 1, we can simplify our problem and make use of the simpler Galilean transforms.
Performing this analysis yields a vertical fall of the emitted light frame, and subsequently the vertical fall
of the emitted photon to be

∆y =
1

2
a∆t2 ≈ 5 · 10−11 m (3)

2. In class, the Eötvös experiment was discussed. Summarize the analysis and determine which latitude on
earth is the best for performing the experiment. Explain your answer in both words and equations

Solution

The Eötvös experiment was designed to test if inertial mass (the mass appearing in F = ma) is equivalent to
gravitational mass (the one appearing in F = GmM/r2). This was done by making use of a torsion balance
(a way to measure very weak forces by way of the twisting of a system). This torsion balance consisted of
a rigid rod supporting two masses on either side (call the weights A and B) as well as a wire attached to
the centre (to measure the torsion). See the figure for a breakdown of the scenario.
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Figure 1: The torsion system for measuring changes between mi and mg. Figure inspiration from Jerome Quintin.

The idea of the experiment is to test the equivalence of the gravitational mass, mg with the inertial mass mi

by utilizing an apparatus that takes both as inputs. The rod has attached to it two masses, A and B fixed
at both ends, which will feel a gravitational force (in the vertical, or y direction) as well as a centrifugal force
(in both the x and y directions). If the inertial and gravitational mass are one and the same, this system
will not twist, and stay in static equilibrium. In our figure, g is the usual Newtonian constant, 9.8m/s2,
gcx , gcy correspond to the centrifugal accelerations in the x and y directions , and mi,mg correspond to the
inertial and gravitational masses. Lets see how this works in equations.

The condition for no torque in the y (vertical) direction is simply given by

`B(mgBg −miBgcy ) = `A(mgAg −miAgcy ) (4)

There is also the possibility that we will torque and twist around the wire suspending the rod. This torque
is given by

τ = `AmiAgcx − `BmiBgcx = `AmiAgcx

(
1− `BmiB

`AmiA

)
(5)

We can write the ratio `B/`A by equation (4) as

`B
`A

=
mgAg −miAgcy
mgBg −miBgcy

(6)

Inserting this into the equation for τ yields

τ = `AmiAgcx

(
1− miB

miA

(
mgAg −miAgcy
mgBg −miBgcy

))
(7)

= `AmiAgcx

(
1−

mgA
miA
− gcx

g
mgB
miB

− gcx
g

)
(8)
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Now we note that the gravitational force of Earth is much larger than the centrifugal acceleration coming
from the rotation of the planet, so we make the approximation

gcx
g ≈ 0 to simplify

τ = `AmiAgcx

(
1− mgAmiB

miAmgB

)
(9)

= `AmgAgcx

(
miA

mgA

− miB

mgB

)
(10)

And since there was no torque observed in the experiment, this implies that the inertial and gravitational
masses are the same.

The best angle is the one that will maximize the torque. Since this is related by gcx , we can note that

gcx = gc cos θ (11)

Where θ is the angle from a vector originating at the centre of the earth to the north pole. The centrifugal
acceleration is gc = ω2R sin θ where ω is the constant angular speed of the earth, and R is the radius of the
earth. Thus, to maximize the horizontal centrifugal acceleration, we must maximize

gcx = ω2R sin θ cos θ (12)

Which is maximized for θ = π/4.

3. In class I did not discuss the Hughes-Drever experiment. This classic experiment is a test of one of the
key aspects of the Einstein Equivalence Principle (EEP), namely local Lorentz invariance. Read up on this
experiment and give a disucssion on how it works and why it is a test of the EEP

Solution

The Hughes-Drever experiment was originally designed to be a test of Mach’s principle (stated that the
inertia in our local frame should be influenced by the distribution of mass in the universe). Since by this
logic, a nonuniform distribution of matter (such as the fact that there is much more matter in the direc-
tion of the Milky way bulge then any other direction within our galaxy) would introduce inertial anisotropies.

Hughes and Drever conducted experiments (separately) to test this hypothesis by examining the split-
ting of the ground state of the nucleus of a lithium-7 atom. Since this nucleus state has a spin of
3/2, its ground state splits into four evenly spaced magnetic energy levels (with spin quantum numbers
Sz = −3/2,−1/2, 1/2, 3/2). The spatial distributions of energy levels are different, however, and so if the
anisotropic mass distribution of the galaxy effected the inertial energy of these energy states, photons from
transitions between these states would have different frequencies. Over the course of a 24 hour experiment
(performed by Drever), the earth turned and the magnetic axis pointed at different regions of the sky.
There was never any frequency change between photons emitted from transitions between the different en-
ergy levels. Thus, the sensitivity of the experiment allowed the maximum anisotropic effects to be limited
to 10−25GeV , a statement strongly in line with Lorentz invariance, stating that there is no preferred frame.

4. Prove that the set of tangent vectors at a point p on a manifold M is a vector space

Solution

This can follow partially from section 2.3 of the text. The set of tangent vectors at a point p can be
identified with the space of directional derivative operators along curves through the point p. The coordinate
independent way to write a vector tangent to a point p is

v = vµ∂µ =
dxµ

dλ

∂

∂xµ
(13)
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Where λ parametrizes the curve through p. The tangent space is then the set of directional derivative
operators through the point p. We will write v = d

dλ to specify a vector tangent to the curve xµ(λ) through
p in what follows. Also define u, and w as tangent vectors with different parametrizations through p, and f
as some smooth test function. To prove that this set is indeed a vector space, we must satisfy the 8 axioms
of vector spaces

(i) Associativity of addition

(u+ (v + w))[f ] = (u[f ] + (v[f ] + w[f ]))

= (
dxµ

dη

∂f

∂xµ
+ (

dxµ

dλ

∂f

∂xµ
+
dxµ

dσ

∂f

∂xµ
))

= ((
dxµ

dη

∂f

∂xµ
+
dxµ

dλ

∂f

∂xµ
) +

dxµ

dσ

∂f

∂xµ
)

= ((u+ v) + w)[f ]

(ii) Commutativity of addition

(u+ v)[f ] = (u[f ] + v[f ])

=

(
dxµ

dη

∂f

∂xµ
+
dxµ

dλ

∂f

∂xµ

)
=

(
dxµ

dλ

∂f

∂xµ
+
dxµ

dη

∂f

∂xµ

)
= (v + u)[f ]

(iii) Identity element of addition

Consider the curve c through p parametrized by ρ as c(ρ) = p. This provides our identity element (the 0
element in the vector space) since ∂xµ

∂ρ = 0.

(iv) Inverse elements of addition

For every vector in the tangent space, v = dxµ

dλ
∂
∂xµ we can define an inverse, w = −dx

µ

dλ
∂
∂xµ by an appropriate

choice of parametrization, such that v + w = 0.

(v) Compatibility of scalar multiplication with field multiplication

a(bv)[f ] = a

(
b
dxµ

dλ

∂f

∂xµ

)
= ab

(
dxµ

dλ

∂f

∂xµ

)
= (ab)v[f ]

(vi) Identity element of scalar multiplication

This one is trivial

1v = 1
dxµ

dλ

∂

∂xµ

=
dxµ

dλ

∂

∂xµ
= v
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(vii) Distributivity of scalar multiplication with respect to vector addition

a(u + v) = a

(
dxµ

dη

∂

∂xµ
+
dxµ

dλ

∂

∂xµ

)
= a

dxµ

dη

∂

∂xµ
+ a

dxµ

dλ

∂

∂xµ

= au + av

(viii) Distributivity of scalar multiplication with respect to field addition

(a+ b)v = (a+ b)
dxµ

dλ

∂

∂xµ

= a
dxµ

dλ

∂

∂xµ
+ b

dxµ

dλ

∂

∂xµ

= av + bv

Since we have now shown our tangent space satisfies these properties, we can be confident in calling it a
proper vector space.

5. Given two vector fields X and Y on M , find the local coordinate representation of the commutator [X,Y ]

Solution

The local coordinate representation of the vector fields is X = xµ∂µ and Y = yν∂ν . The commutator is
thus

[X,Y ] = [xµ∂µ, y
ν∂ν ] = xµ∂µ(yν∂ν)− yν∂ν(xµ∂µ)

= xµyν∂µ∂ν + xµ∂µy
ν∂ν − yνxµ∂ν∂µ − yν∂νxµ∂µ

= xµ∂µy
ν∂ν − yν∂νxµ∂µ

(14)

Now we can rename some of the indices since we contract along them to further simplify

[X,Y ] = xµ∂µy
ν∂ν − yµ∂µxν∂ν = (xµ∂µy

ν − yµ∂µxν)∂ν (15)

Which is as good as we can get. Note that in the textbook, equation 2.23 states

[X,Y ]µ = xλ∂λy
µ − yλ∂λxµ (16)

but it is important to remember that

[X,Y ] = [X,Y ]µ∂µ (17)

and our answer is consistent with that.

6. To gain familiarity with the abstract defintion of tangent vector, vector fields, and commutator, prove the
following properties (some of them stated in class):
a) The tangent vector Tp (p a point on the manifold) operates linearly on functions, i.e.

Tp(af + bg) = aTp(f) + bTp(g) (18)
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where a, b are real numbers and f, g are functions on the manifold.

b) The tangent vector satisfies the Leibniz rule, i.e.

Tp(fg) = f(p)T (g) + g(p)T (f) (19)

c) The commutator satisfies the Jacobi identity stated in class.

d) If X and Y are vector fields and f and g are functions on the manifold, then fX is a vector field and

[fX, gY ] = fg[X,Y ] + (fX(g))Y − (gY (f))X (20)

Solutions

Recall from problem 4, that we had defined the notion of a tangent vector at a point p as Tp = dxµ

dλ
∂
∂xµ ,

evaluated at the point x = p. A tangent vector acting on a function f will simply be Tp(f) = dxµ

dλ
∂
∂xµ f

a) The proof that it operates linearly on functions is straightforward,

Tp(af + bg) =
dxµ

dλ

∂

∂xµ
(af) +

dxµ

dλ

∂

∂xµ
(bg)

= a
dxµ

dλ

∂

∂xµ
f + b

dxµ

dλ

∂

∂xµ
g

= aTp(f) + bTp(g)

(21)

Thus it operates linearly

b) Next is the Leibniz rule

Tp(fg) =
dxµ

dλ

∂

∂xµ
(fg) = f

dxµ

dλ

∂

∂xµ
g + g

dxµ

dλ

∂

∂xµ
f = fTp(g) + gTp(f) (22)

Therefore product rule is satisfied

c) The Jacobi identity states that for three vector fields, X,Y, Z the following relation is satisfied

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (23)

Lets start by looking at the first term

[X, [Y,Z]] = [X,Y Z − ZY ] = XY Z −XZY − Y ZX + ZY X (24)

So the full identity can be written as

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] =

XY Z −XZY − Y ZX + ZY X+

Y ZX − Y XZ − ZXY +XZY+

ZXY − ZY X −XY Z + Y XZ = 0

(25)

d) Let us start by filling in what we know

[fX, gY ] = fxµ∂µ(gyν∂ν)− gyν∂ν(fxµ∂µ) (26)
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Performing product rule expansions yields

[fX, gY ] = fxµ∂µ(g)yν∂ν + fxµg∂µ(yν)∂ν + fxµgyν∂µ(∂ν)

−gyν∂ν(f)xµ∂µ − gyνf∂ν(xµ)∂µ − gyνfxµ∂ν(∂µ)
(27)

The terms with ∂µ(∂ν) and vice versa cancel out as partial derivatives commute, and so we are left with
(after a bit of rearranging)

[fX, gY ] = fgxµ∂µy
ν∂ν − fgyν∂νxµ∂µ + fxµ∂µ(g)yν∂ν − gyν∂ν(f)xµ∂µ

= fgXY − fgY X + (fX(g))Y − (gY (f))X

= fg[X,Y ] + (fX(g))Y − (gY (f))X

(28)
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