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Solutions

Prepared by Bryce Cyr

April 3, 2018

1. The metric for the three-sphere in coordinates (ψ, θ, φ) is

ds2 = dψ2 + sin2(ψ)(dθ2 + sin2(θ)dφ2) (1)

a) Calculate the Christoffel symbols
b) Calculate the Riemann tensor, Ricci tensor, and Ricci scalar.

Solution

a) Recall that

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

And with our metric, the nonzero metric elements are

gψψ = 1 gθθ = sin2 ψ gφφ = sin2 ψ sin2 θ

We will approach this systematically, by check the upper index of the connection coefficients first.

Γψµν =
1

2
gψψ(∂µgνψ + ∂νgψµ − ∂ψgµν)

The first two terms are 0 since derivatives of gψψ vanish. This gives us two choices for the last term,
µ = ν = θ and µ = ν = φ. These yield the coefficients

Γψθθ = − sinψ cosψ

Γψφφ = − sinψ cosψ sin2 θ

That’s it for the upper ψ index. Lets move onto θ. We have

Γθµν =
1

2
gθθ(∂µgνθ + ∂νgθµ − ∂θgµν)

Lets start with the last term. This is only nonzero if µ = ν = φ. This yields the symbol

Γθφφ = − sin θ cos θ
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This takes care of the φ indices. The only other way to get a nonzero symbol is by µ = θ or ν = θ. In the
first instance, we get

Γθθν =
1

2
gθθ(∂θgνθ + ∂νgθθ − ∂θgθν)

The first term and the final term are 0 by inspection. The middle term is nonzero if ν = ψ. By the symmetry
of the symbols we get

Γθθψ = Γθψθ = cotψ

Finally, lets look at the last upper index. It is

Γφµν =
1

2
gφφ(∂µgνφ + ∂νgφµ − ∂φgµν)

The final term is always 0 since no part of the metric is φ dependent. Now, either µ or ν must be φ to get
a nonzero symbol. The derivative will alternate between the symmetric indices, and so a straightforward
computation yields the final four symbols

Γφψφ = Γφφψ = cotψ

Γφθφ = Γφφθ = cot θ

To recap, the nonzero Christoffel symbols here are

Γψθθ = − sinψ cosψ

Γψφφ = − sinψ cosψ sin2 θ

Γθφφ = − sin θ cos θ

Γθθψ = Γθψθ = cotψ

Γφψφ = Γφφψ = cotψ

Γφθφ = Γφφθ = cot θ

b) The Riemann tensor is defined as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (2)

The techniques to find the Riemann tensor were illustrated in one of the solutions for assignment 4, and
so we will compute as many as my energy will allow for these Christoffel symbols. We recall the useful
expression

Rρσµν = gλρR
λ
σµν

Which allows us to fully exploit the symmetries

Rρσµν = −Rρσνµ Rρσµν = −Rσρµν Rρσµν = Rµνρσ Rρ[σµν] = 0
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With this in mind, lets start by computing the upper ψ index Riemann tensor indices. Since gψψ = 1, we
don’t have to do any conversion between the two forms. We get

Rψσµν = ∂µΓψνσ − ∂νΓψµσ + ΓψµλΓλνσ − ΓψνλΓλµσ

Now, to keep the first term nonzero, we note that we have three options. First, we can set ν = σ = θ and
µ = ψ to find

Rψθψθ = ∂ψ(− sinψ cosψ)− ∂θΓψψθ + ΓψψλΓλθθ − ΓψθλΓλψθ

= sin2 ψ − cos2 ψ + cos2 ψ

= sin2 ψ

The middle two terms are 0 in the top line. By the symmetries, we can write a few more terms

Rψθψθ = sin2 ψ Rθψψθ = Rψθθψ = − sin2 ψ Rψψθθ = 0

As our second check, we note that choosing ν = σ = φ and µ = ψ yield a nonzero first term as well. This
expression is

Rψφψφ = ∂ψ(− sinψ cosψ sin2 θ)− ∂φΓψψφ + ΓψψλΓλφφ − ΓψφλΓλψφ

= sin2 θ(sin2 ψ − cos2 ψ) + cos2 ψ sin2 θ

= sin2 θ sin2 ψ

The symmetries then yield

Rψφψφ = sin2 θ sin2 ψ Rφψψφ = Rψφφψ = − sin2 θ sin2 ψ Rψψφφ = 0

Finally, the last option to keep the first term nonzero is ν = σ = φ with µ = θ This yields

Rψφθφ = ∂θ(− sinψ cosψ sin2 θ)− ∂φΓψθφ + ΓψθλΓλφφ − ΓψφλΓλθφ

= −2 sinψ cosψ sin θ cos θ + sinψ cosψ sin θ cos θ + sinψ cosψ sin θ cos θ

= 0

So this one vanishes, as well as all its forms related by symmetries.

Now we move to the second term, ∂νΓψµσ. We have multiple choices again, so first, set µ = σ = θ and
ν = ψ. This means we would be computing Rψθθψ. We already know what this is from above! Its simply
− sin2 θ sin2 ψ, thus no computation is necessary. Moving on, we can choose µ = σ = φ and ν = ρ. This is
the computation of Rψφφψ which is also done. Finally, the last thing that keeps the second term nonzero
is µ = σ = φ with ν = θ. This computes Rψφφθ, which is 0 by an antisymmetric transformation of our
previous result. Thus, we didn’t have to perform any explicit calculation for this term!

Moving now to the third term,

ΓψµλΓλνσ = ΓψµψΓψνσ + ΓψµθΓ
θ
νσ + ΓψµφΓφνσ = 0 + ΓψµθΓ

θ
νσ + ΓψµφΓφνσ

3



We have options here, first, we can set µ = θ and ν = σ = φ. This will mean we compute Rψφθφ We have
computed this already, and its 0. Next option, set µ = θ, ν = θ, and σ = ψ. This computation is of Rψψθθ,
also 0. Our next choice is µ = φ, ν = ψ, σ = φ. This is computing Rψφφψ = − sin2 θ sin2 ψ from symmetry.
Finally, we can also make the choice µ = φ, ν = θ, σ = φ. This yields Rψφφθ, which is 0 once again by
symmetry.

Lets move onto the final term, expanded it is

ΓψνλΓλµσ = ΓψνψΓψµσ + ΓψνθΓ
θ
µσ + ΓψνφΓφµσ = 0 + ΓψνθΓ

θ
µσ + ΓψνφΓφµσ

We have four choices again, so lets speed through them. First, choose ν = θ, µ = σ = φ. This corresponds
to computing Rψφφθ, again 0. Next choose ν = θ, µ = θ, σ = ψ. This computes Rψψθθ = 0. Next choice
would be µ = φ, ν = ψ, σ = φ. This computes Rψφφψ, already computed above. Finally, choose ν = φ,
µ = θ, σ = φ. This computes Rψφθφ = 0.

This concludes the computation of the Riemann symbols for the upper index of ψ. As you can see, (and
I’m sure you know after doing it yourself) it is a bit of a slow process. I will quote the results of the other
nonzero Riemann tensor elements here, but rest assured they come from the exact same process as above
but for upper indices θ and φ instead. Our nonzero elements are

Rψθψθ = Rθψθψ = sin2 ψ Rθψψθ = Rψθθψ = − sin2 ψ

Rψφψφ = Rφψφψ = sin2 θ sin2 ψ Rφψψφ = Rψφφψ = − sin2 θ sin2 ψ

Rθφθφ = Rφθφθ = sin2 θ sin4 ψ Rφθθφ = Rθφφθ = − sin2 θ sin4 ψ

To get back to the proper form, we take the transformation Rρσµν = gρλRλσµν , where we have

gψψ = 1 gθθ =
1

sin2 ψ
gφφ =

1

sin2 ψ sin2 θ

With these transforms, we get our final Riemann tensor elements.

Rψθψθ = sin2 ψ Rψθθψ = − sin2 ψ Rψφψφ = sin2 θ sin2 ψ Rψφφψ = − sin2 θ sin2 ψ

Rθψθψ = 1 Rθψψθ = −1 Rθφθφ = sin2 θ sin2 ψ Rθφφθ = − sin2 θ sin2 ψ

Rφψφψ = 1 Rφψψφ = −1 Rφθφθ = sin2 ψ Rφθθφ = − sin2 ψ

The Ricci tensor is determined by a contraction of the Riemann tensor, Rµν = Rλµλν Since we know this
is a symmetric tensor in three dimensions, we can calculate the six independent components individually
without much work.

Rψψ = Rψψψψ +Rθψθψ +Rφψφψ

= 0 + 1 + 1

= 2

Rθθ = Rψθψθ +Rθθθθ +Rφθφθ

= sin2 ψ + 0 + sin2 ψ

= 2 sin2 ψ
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Rφφ = Rψφψφ +Rθφθφ +Rφφφφ

= sin2 ψ sin2 θ + sin2 ψ sin2 θ

= 2 sin2 ψ sin2 θ

Rψθ = Rψψψθ +Rθψθθ +Rφψφθ

= 0 + 0 + 0

= 0

Rψφ = Rψψψφ +Rθψθφ +Rφψφφ

= 0 + 0 + 0

= 0

Rθφ = Rψθψφ +Rθθθφ +Rφθφφ

= 0 + 0 + 0

= 0

So the independent components of our Ricci tensor are

Rψψ = 1

Rθθ = 2 sin2 ψ

Rφφ = 2 sin2 ψ sin2 θ

Rψθ = Rψφ = Rθφ = 0

Our Ricci scalar is defined as R = gµνRµν . Using the inverse metric written above, this yields

R = gψψRψψ + gθθRθθ + gφφRφφ

= 2 + 2 + 2

= 6
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2. Do the same calculation using the tetrad basis.

Solution

Recall our line element from the previous problem

ds2 = dψ2 + sin2 ψdθ + sin2 ψ sin2 θdφ2

To make use of the tetrad formalism, we would like to have a line element that looks like

ds2eaebδab

Where a, b run from 1 to 3. This allows us to define our tetrad basis. It will be

eψ = dψ eθ = sinψdθ eφ = sinψ sin θdφ

Note that we are now in a noncoordinate basis. The appendix J of the book provides a good background on
the application of the tetrad formalism, so refer to it if you are having any confusion. We wish to compute
the Riemann tensor, which by equation J.29 is

Rab = dωa
b + ωa

c ∧ ωc
b (3)

If we expect to find this, we had better start by first computing the spin connection, ω. Note that the
Riemann tensor in the above expression has been expressed in a basis of one forms, so Rab = Rabµνdxµdxν .
We can determine the spin connection by the expression

dea = eb ∧ ωa
b

Note that the spin connections are antisymmetric (see appendix J), so ωaa = 0. Clearly we need the
differential of our basis to compute the spin connections, but at least that we can do! This basis is

deψ = 0

deθ = cosψdψ ∧ dθ
deφ = cosψ sin θdψ ∧ dφ+ sinψ cos θdθ ∧ dφ

Lets write down our three equations now, and deduce the elements of the spin connection.

0 = sinψdθ ∧ ωψθ + sinψ sin θdφ ∧ ωψφ
cosψdψ ∧ dθ = dψ ∧ ωθψ + sinψ sin θdφ ∧ ωθφ

cosψ sin θdψ ∧ dφ+ sinψ cos θdθ ∧ dφ = dψ ∧ ωφψ + sinψdθ ∧ ωφθ

From the third line, comparing the left and right hand sides, we can see that ωφθ = cos θdφ and ωφψ =

cosψ sin θdφ. Now from the second line we can see that ωθψ = cosψdθ. Since the spin connection is a 3× 3
antisymmetric object, there are only three independent components, which we have found. For clarity, they
are
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ωφθ = cos θdφ

ωφψ = cosψ sin θdφ

ωθψ = cosψdθ

In order to compute the Riemann tensor, we must take the differential of these objects as well. They are

dωφθ = − sin θdθ ∧ dφ

dωφψ = − sinψ sin θdψ ∧ dφ+ cosψ cos θdθ ∧ dφ

dωθψ = − sinψdψ ∧ dθ

From here, we can finally compute the Riemann tensor, Rab = dωa
b + ωa

c ∧ ωc
b. We note this object is also

antisymmetric in a and b, so we only need to compute the three independent components once again.

Rψθ = dωψθ + ωψφ ∧ ω
φ
θ

= sinψdψ ∧ dθ − cos θ sin θ cosψdφ ∧ dφ
= sinψdψ ∧ dθ

Rψφ = dωψφ + ωψθ ∧ ω
θ
φ

= sinψ sin θdψ ∧ dφ− cosψ cos θdθ ∧ dφ+ cos θ cosψdθ ∧ dφ
= sinψ sin θdψ ∧ dφ

Rθφ = dωθφ + ωθψ ∧ ω
ψ
φ

= sin θdθ ∧ dφ− cos2 ψ sin θdθ ∧ dφ
= sin θ(1− cos2 ψ)dθ ∧ dφ
= sin θ sin2 ψdθ ∧ dφ

Our Riemann tensor is thus

Rψ
′

θ′ = sinψdψ ∧ dθ

Rψ
′

φ′ = sinψ sin θdψ ∧ dφ

Rθ
′

φ′ = sin θ sin2 ψdθ ∧ dφ

Where I have introduced the prime notation to specify that these are in the noncoordinate basis. We wish
to switch back to the coordinate basis now, since the difficult part of finding the tensor is taken care of.
The expression to do so is (equation J.49 in the book)

Rρσµν = eρae
b
σR

a
bµν

Recall that we had expressed everything on a basis of one-forms, so we had ea = eaµdx
µ. This means that

the ebσ is the coefficient attached to the differential in our tetrad coordinates, and eρa the reciprocal (since
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the metric is diagonal). Note also that the differentials in the wedge product are our basis one-forms, µ and

ν, so for example, Rψ
′

θ′ψθ = sinψdψ ∧ dθ. Lets compute the upper ψ Riemann metric elements now.

Rψσµν = eψψ′e
b
σR

ψ′

bµν

= eψψ′e
ψ′

σ R
ψ′

ψ′µν + eψψ′e
θ′

σ R
ψ′

θ′µν + eψψ′e
φ′

σ R
ψ′

φ′µν

We note that since the tetrad basis is diagonal in the coordinate basis (no cross-terms), we only have three

nonzero, diagonal e terms. Since Rψ
′

ψ′ = 0, this yields the two Riemann tensor symbols from the last two
terms above as

Rψθµν = eψψ′e
θ′

θ R
ψ′

θ′µν

= (1)(sinψ)(sinψdψ ∧ dθ)

Rψθψθ = sin2 ψ

For one of them. The other given by the φ term

Rψφµν = eψψ′e
φ′

φ R
ψ′

φ′µν

= (1)(sinψ sin θ)(sinψ sin θdψ ∧ dφ)

Rψφψφ = sin2 ψ sin2 θ

Moving onto upper θ terms yields

Rθψµν = eθθ′e
ψ′

ψ R
θ′

ψ′µν

=

(
1

sinψ

)
(1)(− sinψdψ ∧ dθ)

Rθψψθ = −1

and

Rθφµν = eθθ′e
φ′

φ R
θ′

φ′µν

=

(
1

sinψ

)
(sinψ sin θ)(sin θ sin2 ψdθ ∧ dφ)

Rθφθφ = sin2 ψ sin2 θ

Lastly, we compute the upper φ components

Rφψµν = eφφ′e
ψ′

ψ R
φ′

ψ′µν

=

(
1

sinψ sin θ

)
(1)(− sinψ sin θdψ ∧ dφ)

Rφψψφ = −1

and finally
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Rφθµν = eφφ′e
θ′

θ R
φ′

θ′µν

=

(
1

sinψ sin θ

)
(sinψ)(− sin θ sin2 ψdθ ∧ dφ)

Rφθθφ = − sin2 ψ

Putting all these symbols together, and exploiting the antisymmetry of the final two indices yields a full
Riemann tensor of

Rψθψθ = sin2 ψ Rψθθψ = − sin2 ψ Rψφψφ = sin2 θ sin2 ψ Rψφφψ = − sin2 θ sin2 ψ

Rθψθψ = 1 Rθψψθ = −1 Rθφθφ = sin2 θ sin2 ψ Rθφφθ = − sin2 θ sin2 ψ

Rφψφψ = 1 Rφψψφ = −1 Rφθφθ = sin2 ψ Rφθθφ = − sin2 ψ

Exactly as we had in the previous problem, thus the Ricci tensor and scalar are obviously the same as
before.
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3. Consider 3-dimensional (i.e. 2 + 1) gravity.
a) How many degrees of freedom are in the Riemann tensor?
b) How many degrees of freedom are in the Ricci tensor?
c) The Riemann tensor can be decomposed into the Ricci tensor and the Weyl tensor (see textbook, Page
130). Using this fact, how many degrees of freedom are in the Weyl tensor?
d) Are there gravity waves (gravity waves are fluctuations of space-time without associated matter pertur-
bations)?

Solution

a) The first the realize when approaching this problem, is that the number of degrees of freedom (or analo-
gously, the number of independent components) is the same in either Rρσµν and Rρσµν . The latter expression
has its symmetries manifest, so lets consider how many degrees of freedom are in that object.

Please refer to pg 128 of the textbook for a great derivation on the number of independent degrees of freedom
for the Riemann tensor in n dimensional spacetime. The end result is

D.O.F. =
1

12
n2(n2 − 1)

For 3 dimensional spacetime, we get that the Riemann tensor has 6 degrees of freedom.

b) The Ricci tensor is a symmetric 2 tensor. In three dimensional spacetime, the Ricci tensor has 9 elements,
and since the tensor is symmetric, this leaves 6 independent degrees of freedom.

c) The Weyl tensor in n dimensions is defined as

Cρσµν = Rρσµν −
2

n− 2
(gρ[µRν]σ − gσ[µRν]ρ) +

2

(n− 1)(n− 2)
gρ[µgν]σR

The easiest way to see the number of degrees of freedom in the Weyl tensor is to note the decomposition.
The question states that you can decompose the Riemann tensor into the Weyl tensor and the Ricci tensor.
Since we know from above that the Riemann tensor has 6 degrees of freedom, and the Ricci tensor also has
6 degrees of freedom, this leaves 0 degrees of freedom for the Weyl tensor to possess. Thus, the Weyl tensor
has no degrees of freedom and must vanish in 2 + 1 dimensions.

Cρσµν = 0

d) Since the Weyl tensor is 0, let us rewrite the Riemann tensor in terms of the Ricci tensor and scalar. We
get (in n = 3 dimensions)

Rρσµν = 2(gρ[µRν]σ − gσ[µRν]ρ)− gρ[µgν]σR

Now, in vacuum we know that Einstein’s equations reduce down to

Gµν = Rµν −
1

2
gµνR = 0

Rµν =
1

2
gµνR

Now we recall that the Ricci scalar is defined as R = gµνRµν . Multiply both sides of the above equation by
gµν to find

10



gµνRµν =
1

2
gµνgµνR

R =
3

2
R

Where we have used the fact gµνgµν = 3 in three dimensions, by definition. This is clearly only satisfied if
R = 0. This implies that Rµν = 0 as well. Now, since the Riemann tensor is defined by the Ricci tensor
and scalar, it too must vanish.

The Riemann tensor is a measure of curvature. Having it vanish implies that there is no curvature, so
gµν = ηµν where ηµν is the Minkowski metric. Recall that gravitational waves can be investigated by
perturbing a Minkowski metric, such that

gµν → ηµν + hµν

Where hµν are small perturbations ontop of a Minkowski background. Since we have just shown that the
metric goes exactly to a Minkowski one, there can be no extra perturbations, and so it is impossible to get
gravitational waves within this theory.
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4. Find the solution to Einstein’s field equations for a massive point particle (at rest) in 2 + 1 dimensional
gravity. Hint: Write the stress-tensor for a point particle, make an ansatz for the metric making use of the
symmetries of the problem (diagonal, static, polar symmetry), and then find the resulting Riemann tensor.
Then solve for the metric.

Solution

The stress energy tensor for a point particle is T 00 = mδ2(~x) in 2 + 1 dimensions.

As an ansatz, we take our metric to be

ds2 = e2A(r)dt2 − dr2 − e2B(r)dφ2

Where we have eliminated the parameter attached to the r variable in the same method as used in Carroll,
page 194. A,B are arbitrary functions of r, and we will drop the r brackets in what follows. To find the
Riemann tensor, we make use of the tetrad formalism. Our tetrad basis is defined as

θt = eAdt θr = dr θφ = eBdφ

Their differentials are

dθt = A′eAdr ∧ dt dθr = 0 dθφ = B′eBdr ∧ dφ

Where A′ = dA/dr. To deduce the spin connections, we must solve dθa = θb∧ωab . Noting the antisymmetry
of ω, we can write down our three equations

dθt = A′eAdr ∧ dt = dr ∧ ωtr + eBdφ ∧ ωtφ
dθr = 0 = eAdt ∧ ωφt + eBdφ ∧ ωrφ
dθφ = B′eBdr ∧ dφ = eAdt ∧ ωφt + dr ∧ ωφr

From these three equations, we can deduce the elements of the spin connection and its exterior derivative

ωtr = A′eAdt dωtr = eA(A′′ +A′2)dr ∧ dt
ωtφ = 0 dωtφ = 0

ωrφ = −B′eBdφ dωrφ = −eB(B′′ +B′2)dr ∧ dφ

To find the elements of the Riemann tensor, we use Rab = dωab + ωac ∧ ωcb . Doing so yields

Rt
′

r′ = eA(A′′ +A′2)dr ∧ dt

Rt
′

φ′ = −A′B′eA+Bdt ∧ dφ

Rr
′

φ′ = −eB(B′′ +B′2)dr ∧ dφ

Now we can find the nonzero components of the Riemann tensor in a coordinate basis, using the expression
Rρσµν = θρaθ

b
σR

a
bµν , where we make note that

θρa = diag(e−A, 1, e−B) θbσ = diag(eA, 1, eB)
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So lets compute each element.

Rtrµν = θtt′θ
r′

r R
t′

r′µν

= (e−A)(1)(A′′ +A′2)eAdr ∧ dt)
Rtrtr = −A′′ −A′2

Rtφµν = θtt′θ
φ′

φ R
t′

φ′µν

= (e−A)(eB)(−A′B′)eA+Bdt ∧ dφ
Rtφtφ = −e2BA′B′

Rrφµν = θrr′θ
φ′

φ R
r′

φ′µν

= (1)(eB)(−(B′′ +B′2)eBdr ∧ dφ)

Rrφrφ = −e2B(B′′ +B′2)

Where the other symbols are related by symmetries and the metric. Lets compute the Ricci tensor. The
metric and inverse metric are

gµν = diag(e2A,−1,−e2B) gµν = diag(e−2A,−1,−e−2B)

So our Ricci tensor is

Rtt = Rtttt +Rrtrt +Rφtφt

= 0 + gttg
rrRtrtr + gttg

φφRtφtφ

= e2A(A′′ +A′B′ +A′2)

Rrr = Rtrtr +Rrrrr +Rφrφr

= Rtrtr + 0 + grrg
φφRrφrφ

= −(A′′ +A′2 +B′′ +B′2)

Rφφ = Rtφtφ +Rrφrφ +Rφφφφ

= Rtφtφ +Rrφrφ + 0

= −e2B(A′B′ +B′′ +B′2)

And our Ricci scalar

R = gµνRµν = gttRtt + grrRrr + gφφRφφ

= 2(A′′ +A′2 +B′′ +B′2 +A′B′)
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Calculate Einstein tensor Gµν = Rµν − 1
2gµνR

Gtt = e2A(A′′ +A′B′ +A′2)− e2A(A′′ +A′2 +B′′ +B′2 +A′B′)

= −e2A(B′′ +B′2)

Grr = −(A′′ +A′2 +B′′ +B′2)− (−1)(A′′ +A′2 +B′′ +B′2 +A′B′)

= A′B′

Gφφ = −e2B(A′B′ +B′′ +B′2)− (−e2B)(A′′ +A′2 +B′′ +B′2 +A′B′)

= e2B(A′′ +A′2)

From the stress tensor, we know that the Grr and Gφφ components must be zero, for r nonzero, this implies
that A′ = 0. We can also set A to 0. This satisfies the two lower equations. Now, the first equation is

Gtt = 8πGTtt = 8πGgttgttT tt

With A = 0 we have gtt = gtt = 1, so we must solve

−B′′ −B′2 = 8πmGδ2(~r)

We note that the elemental area in polar coordinates is eBdrdφ, and so we can write the normalization of
the delta function as

∫ ∞
0

∫ 2π

0

δ2(~r)eBdrdφ = 1

Now, define a new variable Λ = eB so that Λ′′ = (B′′ + B′2)eB . The temporal part of the Einstein tensor
becomes

Λ′′e−B = −8πmGδ2(~r)

Clearly from this, δ2(~r)eB = −Λ′′/8πmG so from the normalization we have

1 = −
∫ ∞
0

∫ 2π

0

Λ′′

8πmG
drdφ

= − 1

4mG
(Λ′(∞)− Λ′(0))

So

Λ′(∞) = Λ′(0)− 4mG

Since Λ′ is constant, we can say that Λ = Dr. Integrating not to infinity but to r yields
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Λ′(r)− Λ′(0) = −4mG

So Λ′ will be discontinuous across the origin. so we can take Λ(r) = dr for r 6= 0 and Λ′(0) = 1 to find
Λ(r) = (1− 4mG)r. With this, we have solved the metric. It is

ds2 = dt2 − dr2 − (1− 4mG)2r2dφ2
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5. In class I sketched the derivation of the Einstein tensor for the spherically symmetric metric

ds2 = e2a(r)dt2 − [e2b(r)dr2 + r2dΩ2] (4)

using the tetrad formalism. Complete the derivation.

Solution

This will follow the same structure as problem 2. The full metric is (for clarity)

ds2 = e2a(r)dt2 − [e2b(r)dr2 + r2dθ2 + r2 sin2 θdφ2]

Our tetrad basis here is

σt = ea(r)dt σr = eb(r)dr σθ = rdθ σφ = r sin θdφ

The differentials of this basis are thus

dσt = a′(r)ea(r)dr ∧ dt
dσr = b′(r)eb(r)dr ∧ dr = 0

dσθ = dr ∧ dθ
dσφ = sin θdr ∧ dφ+ r cos θdθ ∧ dφ

Where we note that a′(r) = da(r)/dr. Now as before, we need to find the spin connections, ω. The
expression is dσa = σb ∧ ωa

b. Writing the four equations that we get yields

dσt = a′eadr ∧ dt = ebdr ∧ ωtr + rdθ ∧ ωtθ + r sin θdφ ∧ ωtφ
dσr = 0 = eadt ∧ ωrt + rdθ ∧ ωrθ + r sin θdφ ∧ ωrφ
dσθ = dr ∧ dθ = eadt ∧ ωθt + ebdr ∧ ωθr + r sin θdφ ∧ ωθφ
dσφ = sin θdr ∧ dφ+ r cos θdθ ∧ dφ = eadt ∧ ωφt + ebdr ∧ ωφr + rdθ ∧ ωφθ

Now from these equations, and the fact that ωab = −ωba, we can deduce the six independent elements of the

spin connection. From the last equation, we can easily deduce ωφr = e−b sin θdφ and ωφθ = cos θdφ. From
the third equation we find that ωθr = e−bdθ. Now, from the first equation we can deduce ωtr = a′ea−bdt.
That’s it for the easy to compute elements of the spin connection. We currently have

ωφr = e−b sin θdφ

ωφθ = cos θdφ

ωθr = e−bdθ

ωtr = a′ea−bdt

We are still missing ωtθ and ωtφ. From the first line, ωtθ is either 0 or proportional to dθ. From the third

line, ωtθ is either 0 or proportional to dt. To satisfy both constraints, we must have ωtθ = 0. By the same
reasoning, we find that ωtφ = 0, so our full spin connection is characterized by
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ωφr = e−b sin θdφ

ωφθ = cos θdφ

ωθr = e−bdθ

ωtr = a′ea−bdt

ωtθ = ωtφ = 0

To find the Riemann tensor, we have to now find the differentials of this. They are

dωφr = −b′e−b sin θdr ∧ dφ+ e−b cos θdθ ∧ dφ

dωφθ = − sin θdθ ∧ dφ
dωθr = −b′e−bdr ∧ dθ
dωtr = a′′ea−bdr ∧ dt+ a′(a′ − b′)ea−bdr ∧ dt = (a′′ + (a′)2 − a′b′)ea−bdr ∧ dt
dωtθ = dωtφ = 0

The Riemann tensor is defined by

Rab = dωa
b + ωa

c ∧ ωc
b

and is antisymmetric, meaning we must compute only the six independent elements once again. Let us
begin

Rtr = dωtr + ωtθ ∧ ωθr + ωtφ ∧ ωφr
= (a′′ + (a′)2 − a′b′)ea−bdr ∧ dt+ 0 + 0

= (a′′ + (a′)2 − a′b′)ea−bdr ∧ dt

Rtθ = dωtθ + ωtr ∧ ωrθ + ωtφ ∧ ω
φ
θ

= 0 + a′ea−bdt ∧ (−e−bdθ) + 0

= a′ea−2bdθ ∧ dt

Rtφ = dωtφ + ωtr ∧ ωrφ + ωtθ ∧ ωθφ
= 0 + a′ea−bdt ∧ (−e−b sin θdφ) + 0

= a′ sin θea−2bdφ ∧ dt

Rrθ = dωrθ + ωrt ∧ ωtθ + ωrφ ∧ ω
φ
θ

= b′e−bdr ∧ dθ + 0 + (−e−b sin θdφ) ∧ (cos θdφ)

= b′e−bdr ∧ dθ
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Rrφ = dωrφ + ωrt ∧ ωtφ + ωrθ ∧ ωθφ
= b′e−b sin θdr ∧ dφ− e−b cos θdθ ∧ dφ+ 0 + (−e−bdθ) ∧ (− cos θdφ)

= b′e−b sin θdr ∧ dφ

Rθφ = dωθφ + ωθt ∧ ωtφ + ωθr ∧ ωrφ
= sin θdθ ∧ dφ+ 0 + e−bdθ ∧ (−e−b sin θdφ)

= sin θ(1− e−2b)dθ ∧ dφ

Ok, let us list our Riemann tensor elements once more for clarity (in the tetrad basis).

Rt
′

r′ = (a′′ + (a′)2 − a′b′)ea−bdr ∧ dt

Rt
′

θ′ = a′ea−2bdθ ∧ dt

Rt
′

φ′ = a′ sin θea−2bdφ ∧ dt

Rr
′

θ′ = b′e−bdr ∧ dθ

Rr
′

φ′ = b′e−b sin θdr ∧ dφ

Rθ
′

φ′ = sin θ(1− e−2b)dθ ∧ dφ

We have primed the variables to distinguish between coordinate and tetrad basis now. We now want to
switch back to the coordinate basis to compute the rest of our objects. We switch back with the usual
expression

Rtσµν = ett′e
b
σR

t′

bµν

= ett′e
t′

σR
t′

t′µν + ett′e
r′

σ R
t′

r′µν + ett′e
θ′

σ R
t′

θ′µν + ett′e
φ′

σ R
t′

φ′µν

Where we have illustrated the formula to solve for an upper t, for clarity. Recall that in our tetrad basis,
all the e’s are diagonal, explicitly they are

et
′

t = ea(r) er
′

r = eb(r) eθ
′

θ = r eφ
′

φ = r sin θ

ett′ = e−a(r) err′ = e−b(r) eθθ′ =
1

r
eφφ′ =

1

r sin θ

In coordinate basis, our Riemann tensor becomes

Rtrµν = ett′e
r′

r R
t′

r′µν

= (e−a)(eb)(a′′ + (a′)2 − a′b′)ea−bdr ∧ dt
Rtrrt = a′′ + (a′)2 − a′b′

Rtθµν = ett′e
θ′

θ R
t′

θ′µν

= (e−a)(r)(a′ea−2bdθ ∧ dt)
Rtθθt = ra′e−2b
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Rtφµν = ett′e
φ′

φ R
t′

φ′µν

= (e−a)(r sin θ)(a′ sin θea−2bdφ ∧ dt)
Rtφφt = ra′ sin2 θe−2b

Rrtµν = err′e
t′

t R
r′

t′µν

= (e−b)(ea)(−(a′′ + (a′)2 − a′b′)ea−bdr ∧ dt)
Rrtrt = −e2(a−b)(a′′ + (a′)2 − a′b′)

Rrθµν = err′e
θ′

θ R
r′

θ′µν

= (e−b)(r)(b′e−bdr ∧ dθ)
Rrθrθ = rb′e−2b

Rrφµν = err′e
φ′

φ R
r′

φ′µν

= (e−b)(r sin θ)(b′e−b sin θdr ∧ dφ)

Rrφrφ = rb′ sin2 θe−2b

Rθtµν = eθθ′e
t′

t R
θ′

t′µν

=

(
1

r

)
(ea)(−a′ea−2bdθ ∧ dt)

Rθtθt = −1

r
a′e2(a−b)

Rθrµν = eθθ′e
r′

r R
θ′

r′µν

=

(
1

r

)
(eb)(−b′e−bdr ∧ dθ)

Rθrrθ = −1

r
b′

Rθφµν = eθθ′e
φ′

φ R
θ′

φ′µν

=

(
1

r

)
(r sin θ)(sin θ(1− e−2b)dθ ∧ dφ)

Rθφθφ = sin2 θ(1− e−2b)

Rφtµν = eφφ′e
t′

t R
φ′

t′µν

=

(
1

r sin θ

)
(ea)(−a′ sin θea−2bdφ ∧ dt)

Rφtφt = −1

r
a′e2(a−b)
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Rφrµν = eφφ′e
r′

r R
φ′

r′µν

=

(
1

r sin θ

)
(eb)(−b′e−b sin θdr ∧ dφ)

Rφrrφ = −1

r
b′

Rφθµν = eφφ′e
θ′

θ R
φ′

θ′µν

=

(
1

r sin θ

)
(r)(− sin θ((1− e−2b)dθ ∧ dφ)

Rφθθφ = −(1− e−2b)

So our full coordinate Riemann tensor is thus

Rtrtr = −(a′′ + (a′)2 − a′b′) Rtθtθ = −ra′e−2b Rtφtφ = −ra′ sin2 θe−2b

Rtrrt = (a′′ + (a′)2 − a′b′) Rtθθt = ra′e−2b Rtφφt = ra′ sin2 θe−2b

Rrtrt = e2(a−b)(a′′ + (a′)2 − a′b′) Rrθrθ = rb′e−2b Rrφrφ = rb′ sin2 θe−2b

Rrttr = −e2(a−b)(a′′ + (a′)2 − a′b′) Rrθθr = −rb′e−2b Rrφφr = −rb′ sin2 θe−2b

Rθtθt = −1

r
a′e2(a−b) Rθrθr =

1

r
b′ Rθφθφ = sin2 θ(1− e−2b)

Rθttθ =
1

r
a′e2(a−b) Rθrrθ = −1

r
b′ Rθφφθ = − sin2 θ(1− e−2b)

Rφtφt = −1

r
a′e2(a−b) Rφrφr =

1

r
b′ Rφθφθ = (1− e−2b)

Rφttφ =
1

r
a′e2(a−b) Rφrrφ = −1

r
b′ Rφθθφ = −(1− e−2b)

The Einstein tensor is Gµν = Rµν − 1
2gµνR so we need to compute the Ricci tensor and scalar. The Ricci

tensor is Rµν = Rλµλν . Lets do so

Rtt = Rtttt +Rrtrt +Rθtθt +Rφtφt

= 0 + e2(a−b)(a′′ + (a′)2 − a′b′)− 1

r
a′e2(a−b) − 1

r
a′e2(a−b)

= e2(a−b)
(
a′′ + (a′)2 − a′b′ + 2a′

r

)

Rrr = Rtrtr +Rrrrr +Rθrθr +Rφrφr

= −(a′′ + (a′)2 − a′b′) + 0 +
1

r
b′ +

1

r
b′

= −a′′ − (a′)2 + a′b′ +
2b′

r

Rθθ = Rtθtθ +Rrθrθ +Rθθθθ +Rφθφθ

= −ra′e−2b + rb′e−2b + 0 + 1− e−2b

= 1 + e−2b(r(b′ − a′)− 1)
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Rφφ = Rtφtφ +Rrφrφ +Rθφθφ +Rφφφφ

= −ra′ sin2 θe−2b + rb′ sin2 θe−2b + sin2 θ(1− e−2b)
= sin2 θ(1 + e−2b(r(b′ − a′)− 1) = sin2 θRθθ

Finally, the Ricci scalar is R = gµνRµν

R = gttRtt + grrRrr + gθθRθθ + gφφRφφ

= e−2ae2(a−b)
(
a′′ + (a′)2 − a′b′ + 2a′

r

)
− e−2b

(
−a′′ − (a′)2 + a′b′ +

2b′

r

)
− 1

r2
(1 + e−2b(r(b′ − a′)− 1))− 1

r2 sin2 θ
(sin2 θ(1 + e−2b(r(b′ − a′)− 1))

= 2e−2b
(
a′′ + (a′)2 − a′b′ + 2(a′ − b′)

r
+

1− e2b

r2

)
Since Rµν = 0 outside the spherically symmetric object, we can solve for the coefficients in the same way
as page 196 of Carroll. This yields

e2a = 1− Rs
r

e2b =

(
1− Rs

r

)−1
Where Rs comes from an undetermined constant of integration, and is interpreted as the Schwarzschild
radius.

The Einstein tensor is Gµν = Rµν − 1
2Rgµν . Since we know (and used) the fact that Rµν = 0, a straightfor-

ward computation in mathematica shows that R = 0 as well. The Einstein tensor is thus

Gµν = 0

As expected for the vacuum outside a spherically symmetric source.
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6. Derive the Einstein tensor for the metric of the above problem, this time using the coordinate approach.
After solving this problem you should be convinced that it is easier to use the tetrad formalism.

Solution

For this problem, we will just compute the Christoffel symbols, showing that they match those given in
equation (5.12) of Carroll, and leave the rest as an exercise, as we have gone from symbols to Riemann
tensor elements many times in previous problems during the course. The line elements is

ds2 = e2Adt2 − e2Bdr2 − r2dθ2 − r2 sin2 θdφ2

gtt = e2A grr = −e2B gθθ = −r2 gφφ = −r2 sin2 θ

The Christoffel symbols are defined by

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

As usual, lets start with an upper t index.

Γtµν =
1

2
gtt(∂µgνt + ∂νgtµ − ∂tgµν)

The final term is 0 since there is no time dependence on the metric. In this cas we can take µ = r and ν = t
(or vice versa) to find

Γtrt = Γttr =
1

2
e−2A(2A′e2A)

= A′

That’s all for this upper index. Next lets look at upper r

Γrµν =
1

2
grr(∂µgνr + ∂νgrµ − ∂rgµν)

There are many options here. For the first two terms, to be nonzero we can set µ = ν = r to find

Γrrr =
1

2
grr∂rgrr =

1

2
(−e−2B)(−2B′e2B) = B′

Now we get a term for each µ = ν = t, θ, φ (we already did the case where it was r). In each case, only the

last term contributes and the symbols are Γrµµ = − 1
2g
rr∂rgµµ = e−2B

2 ∂rgµµ

Γrtt = A′e2(A−B)

Γrθθ = −re−2B

Γrφφ = −r sin2 θe−2B
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Now lets consider an upper θ. This gives us the equation

Γθµν =
1

2
gθθ(∂µgνθ + ∂νgθµ − ∂θgµν)

The first two terms are symmetric, and require either µ = r, ν = θ, or vice versa. This yields

Γθrθ = Γθθr =
1

2
gθθ∂rgθθ = −1

2
r−2(−2r)

=
1

r

For the last term, we require that µ = ν = φ to be nonzero, and so we find

Γθφφ =
1

2
r−2(−2r2 sin θ cos θ) = − sin θ cos θ

Now lets move onto the last terms, with upper index φ

Γφµν =
1

2
gφφ(∂µgνφ + ∂νgφµ − ∂φgµν)

The last term is always 0. The first two terms are nonzero for µ = r, ν = φ AND µ = θ, ν = φ (and vice
versa). This leads to the symbols

Γφrφ = Γφφr =
1

2
gφφ∂rgφφ =

1

2
(−r−2 sin−2 θ)(−2r sin2 θ)

=
1

r

Γφθφ = Γφφθ =
1

2
gφ∂θgφφ =

1

2
(−r−2 sin−2 θ)(−2r2 sin θ cos θ)

= cot θ

To recap, our symbols were

Γtrt = Γttr = A′

Γrrr = B′

Γrtt = A′e2(A−B)

Γrθθ = −re−B

Γrφφ = −r sin2 θe−2B

Γθrθ = Γθθr =
1

r

Γθφφ = − sin θ cos θ

Γφrφ = Γφφr =
1

r

Γφθφ = Γφφθ = cot θ

These 9 independent symbols match (5.12) of Carroll. From here it is straightforward (and very tedious) to
go to the Riemann tensor, and eventually to the Ricci tensor and scalar. If you have any specific questions
on those steps, feel free to email me at bryce.cyr@mail.mcgill.ca and I can help you out, but I won’t be
continuing the full derivation here.
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