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1. Consider two inspiraling black holes with mass 10M0, where M0 is the mass of the sun. Assume the system
is located at a distance from us which is equal to our distance from the centre of our galaxy. Assume
that the initial seperation is 100rs, where rs is the Schwarzschild radius. In the weak field approximation,
compute the gravitational wave amplitude h(t) at the LIGO site as a function of time, making use of the
quadrupole radiation formula. Then, using the formula for the radiated power derived in class, compute
the gradual decay of the orbital radius r(t) (using Newtonian physics to relate the energy density radiated
to the change in the orbital radius). The approximations cease to be valid once r(t) approaches rs, so stop
the calculation before that point.
Out of 20

Solution

The weak field limit is gµν ≈ ηµν + hµν , where hµν corresponds to a small perturbation about Minkowski
space (such as those sourced by distant binary black holes. The derivation of the quadrupole moment is
presented in section 7.5 of Carroll, and so won’t be rederived here. The final statement is that the trace
reversed perturbation is

h̄ij(t,x) =
2G

r

d2Iij
dt2

(tr)

Where tr = t − |x − y| is the retarded time, r is the distance from the source to the observer, h̄µν =
hµν − 1

2hηµν , and Iij(t) is the quadrupole moment tensor

Iij(t) =

∫
yiyjT 00(t,y)d3y

This is very similar to the example of the binary star system starting on page 305, so we follow closely. The
velocity of each black hole is given by equating the centripedal force to the gravitational one

100GM2
0

(100rs)2
=

10M0v
2

50rs
v =

√
GM0

20rs

A single orbit takes T = 2π(50rs)/v and has an angular frequency

Ω =
2π

T
=

1

100

√
GM0

5r3s

The paths of the black holes (labelled by a and b) then follow
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x1a = 50rs cos Ωt x2a = 50rs sin Ωt

x1b = −50rs cos Ωt x2b = −50rs sin Ωt

Figure 1: An over-simplified Microsoft paint illustration of the problem

The energy density is localized in space to each of the black holes, and so we get some convenient delta
functions

T 00(t, ~x) = 10M0δ(x
3)[δ(x1 − 50rs cos Ωt)δ(x2 − 50rs sin Ωt) + δ(x1 + 50rs cos Ωt)δ(x2 + 50rs sin Ωt)]

The quadrupole moment is then easy to find

I11 = 50000M0r
2
s cos2 Ωt = 25000M0r

2
s(1 + cos 2Ωt)

I22 = 50000M0r
2
s cos2 Ωt = 25000M0r

2
s(1− cos 2Ωt)

I12 = I21 = 50000M0r
2
s sin Ωt · cos Ωt = 25000M0r

2
s sin 2Ωt

Ii3 = I3i = 0

From this, we see that the trace-reversed perturbations are given by

h̄ij(t, ~x) =
2G

r
· 100000M0r

2
sΩ

2

− cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0


Which of course is just the same as equation 7.149 in the text

h̄ij(t, ~x) =
8G

r
·MR2Ω2

− cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0
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with M → 10M0 and R→ 50rs.

Since we have separated the constant and oscillatory parts of h̄ij , the amplitude will just be the prefactor.

h(t) =
8GMR(t)2Ω2

r
=

2G2M2

rR(t)

Or, for our specific case at the beginning of the inspiral

h =
4G2M2

0

r · rs

This amplitude grows with time, as the radius of orbit of the black holes (R(t)) shrinks.

The power radiated for a binary orbit is given by equation 7.193 in the textbook

P = −2

5

G4M5

R5(t)

The total energy for an object in a binary orbit is

E =
1

2
Mv2 − GM2

2R

In the Newtonian limit, the velocity is given by v2 = GM/2R so our expression becomes

E = −GM
2

4R
P =

dE

dt
=
GM2

4R2

dR

dt

Equating the two power equations yields

GM2

4R2

dR

dt
= −2

5

G4M5

R5

dR

dt
= −8

5

G3M3

R3

Integration yields

R4 = −32

5
G3M3t+ C

Our initial condition is that R(t = 0) = 50rs so C = 6.25 · 106r4s

So our orbit decays as

R(t) =

(
6.25 · 106r4s −

32

5
G3M3t

)1/4

Where M = 10M0.
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2. In class I justified the ansatz for a cosmological metric of the form

ds2 = dt2 − a(t)2(dψ2 + f2k (ψ)[dθ2 + sin2 θdφ2])

and sketched the derivation of the Einstein tensor in the tetrad basis. Perform the explicit calculation.

Solution

We will write the line element in a slightly more compact form

ds2 = dt2 − a2(dψ2 + f2[dθ2 sin2 θdφ2])

As a matter of notation, overdots represent time derivatives, and primes represent derivatives with respect
to ψ. Now, to start, our tetrad basis and exterior derivatives are

et = dt det = 0

eψ = adψ deψ = ȧdt ∧ dψ
eθ = afdθ deθ = ȧfdt ∧ dθ + af ′dψ ∧ dθ
eφ = af sin θdφ deφ = ȧf sin θdt ∧ dφ+ af ′ sin θdψ ∧ dφ+ af cos θdθ ∧ dφ

Now we use de1 = eb ∧ ωab to deduce the spin connection

det = 0 = adψ ∧ ωtψ + afdθ ∧ ωtθ + af sin θdφ ∧ ωtφ
deψ = ȧdt ∧ dψ = dt ∧ ωψt + afdθ ∧ ωψθ + af sin θdφ ∧ ωψφ

deθ = ȧfdt ∧ dθ + af ′dψ ∧ dθ = dt ∧ ωθt + adψ ∧ ωθψ + af sin θdφ ∧ ωθφ
deφ = ȧf sin θdt ∧ dφ+ af ′ sin θdψ ∧ dφ+ af cos θdθ ∧ dφ = dt ∧ ωφt + adψ ∧ ωφψ + afdθ ∧ ωφθ

After some investigation, the six independent spin tensor components (and their exterior derivatives) are

ωψt = ȧdψ dωψt = ädt ∧ dψ
ωθt = ȧfdθ dωθt = äfdt ∧ dθ + ȧf ′dψ ∧ dθ

ωφt = ȧf sin θdφ dωφt = äf sin θdt ∧ dφ+ ȧf ′ sin θdψ ∧ dφ+ ȧf cos θdθ ∧ dφ
ωθψ = f ′dθ dωθψ = f ′′dψ ∧ dθ

ωφψ = f ′ sin θdφ dωφψ = f ′′ sin θdψ ∧ dφ+ f ′ cos θdθ ∧ dφ

ωφθ = cos θdφ dωφθ = − sin θdθ ∧ dφ

Now we can determine the tetrad version of the Riemann tensor, Rab = dωab +ωac ∧ωcb . After a bit of algebra
(and some glorious cancellations) we find
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Rψ
′

t′ = ädt ∧ dψ

Rθ
′

t′ = äfdt ∧ dθ

Rφ
′

t′ = äf sin θdt ∧ dφ

Rθ
′

ψ′ = (f ′′ + ȧ2f)dψ ∧ dθ

Rφ
′

ψ′ = sin θ(f ′′ + ȧ2f)dψ ∧ dφ

Rφ
′

θ′ = sin θ(f ′2 + ȧ2f2 − 1)dθ ∧ dφ

Next up is to compute the normal Riemann tensor Rρσµν = eρa′e
b′

σR
a′

b′µν where we have

eρa′ = Diag(1, a−1, (af)−1, (af sin θ)−1) eb
′

σ = Diag(1, a, af, af sin θ)

Our tensor is thus

Rψtµν = eψψ′e
t′

t R
ψ′

t′µν

= (a−1)(1)(ädt ∧ dψ)

Rψtψt = − ä
a

Rθtµν = eθθ′e
t′

t R
θ′

t′µν

= ((af)−1)(1)(äfdt ∧ dθ)

Rθtθt = − ä
a

Rφtµν = eφφ′e
t′

t R
φ′

t′µν

= ((af sin θ)−1)(1)(äf sin θdt ∧ dφ)

Rφtφt = − ä
a

Rθψµν = eθθ′e
ψ′

ψ R
θ′

ψ′µν

= ((af)−1)(a)((f ′′ + ȧ2f)dψ ∧ dθ)

Rθψθψ = −
(
f ′′

f
+ ȧ2

)

Rφψµν = eφφ′e
ψ′

ψ R
φ′

ψ′µν

= ((af sin θ)−1)(a)(sin θ(f ′′ + ȧ2f)dψ ∧ dφ)

Rφψφψ = −
(
f ′′

f
+ ȧ2

)

Rφθµν = eφφ′e
θ′

θ R
φ′

θ′µν

= ((af sin θ)−1)(af)(sin θ(f ′2 + ȧ2f2 − 1)dθ ∧ dφ)

Rφθφθ = −(f ′2 + ȧ2f2 − 1)
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In summary, we have

Rψtψt = − ä
a

Rθtθt = − ä
a

Rφtφt = − ä
a

Rθψθψ = −
(
f ′′

f
+ ȧ2

)
Rφψφψ = −

(
f ′′

f
+ ȧ2

)
Rφθφθ = −(f ′2 + ȧ2f2 − 1)

Now recall the metric and inverse metric

gµν = Diag(1,−a2,−a2f2,−a2f2 sin2 θ)

gµν = Diag(1,−a−2,−a−2f−2,−a−2f−2 sin−2 θ)

We can now compute the Ricci tensor, Rµν = Rσµσν

Rtt = Rtttt +Rψtψt +Rθtθt +Rφtφt

= − ä
a
− ä

a
− ä

a

= −3
ä

a

Rψψ = Rtψtψ +Rψψψψ +Rθψθψ +Rφψφψ

= gttgψψR
ψ
tψt +Rθψθψ +Rφψφψ

= (1)(−a2)

(
− ä
a

)
−
(
f ′′

f
+ ȧ2

)
−
(
f ′′

f
+ ȧ2

)
= aä− 2ȧ2 − 2

f ′′

f

Rθθ = Rtθtθ +Rψθψθ +Rθθθθ +Rφθφθ

= gttgθθR
θ
tθt + gψψgθθR

θ
ψθψ +Rφθφθ

= (1)(−a2f2)(−
(
ä

a

)
) + (−a−2)(−a2f2)(−

(
f ′′

f
+ ȧ2

)
)− (f ′2 + ȧ2f2 − 1)

= aäf2 − ff ′′ − f2ȧ2 − f ′2 − ȧ2f2 + 1

= 1 + f2(aä− 2ȧ2)− ff ′′ − f ′2
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Rφφ = Rtφtφ +Rψφψφ +Rθφθφ +Rφφφφ

= gφφg
ttRφtφt + gφφg

ψψRφψφψ + gφφg
θθRφθφθ

= (−a2f2 sin2 θ)(1)(−
(
ä

a

)
) + (−a2f2 sin2 θ)(−a−2)(−

(
f ′′

f
+ ȧ2

)
) + (−a2f2 sin2 θ)(−a−2f−2)(−(f ′2 + ȧ2f2 − 1)

= f2 sin2 θaä− sin2 θff ′′ − ȧ2f2 − sin2 θ(f ′2 + ȧ2f2 − 1)

= sin2 θRθθ

The Ricci scalar is given by R = gµνRµν

R = gttRtt + gψψRψψ + gθθRθθ + gφφRφφ

= (1)

(
−3

ä

a

)
− (a−2)(aä− 2ȧ2 − 2

f ′′

f
)− 2(a−2f−2)Rθθ

= −3
ä

a
− ä

a
+ 2

ȧ2

a2
+ 2

f ′′

fa2
− 2

a2f2
− 2

ä

a
+ 4

ȧ2

a2
+ 2

f ′′

a2f
+ 2

f ′2

a2f2

= −2

(
3
ä

a
− 3

ȧ2

a2
− 2

f ′′

a2f
− f ′2

a2f2
+

1

a2f2

)

Computing Einstein tensor, Gµν = Rµν − 1
2gµνR in Mathematica (I got tired, sorry!) yields

Gtt = −3
ȧ2

a2
− f ′2

a2f2
+

1

a2f2
− 2f ′′

a2f

Gψψ = −2aä+ ȧ2 +
f ′2

f2
− 1

f2

Gθθ = −2aäf2 + ȧ2f2 + ff ′′

Gφφ = sin2 θ(−2aäf2 + ȧ2f2 + ff ′′)
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3. Consider the thermal equilibrium distribution for Bose and Fermi particles. For bosons this is the black
body spectrum.
a) Show that if a particle species decouples at a given time t1 with a black body distribution, it will maintain
the black body distribution with a temperature which is simply redshifted by the expansion of the Universe.
b) Is the spectreal form preserved for any initial distribution?
c) Is the black body spectrum the unique spectrum for which its form is preserved under expansion?

Solution

The distribution functions obeyed by Fermions and Bosons are

f(E) =
1

eE/T ± 1

Where + corresponds to Fermions and − to Bosons. We have neglected chemical potentials here, as they are
usually small (∼ 0 in the case of CMB photons). Our question is, given an initial energy Ei and temperature
Ti, does the form of f(E) change with the expansion of the universe? To do this, we need to see how particle
energy changes with expansion, and so let us look at the evolution of U0, the time component of the four
velocity. We need a metric, and so we will take the usual FRW (in the absence of curvature)

ds2 = −dt2 + a(t)2
[
dx2 + dy2 + dz2

]
The geodesic equation is as usual

dUµ

dλ
+ ΓµρσU

ρUσ = 0

Since we are looking for the evolution of the 0 component this reduces to

dU0

dλ
+ Γ0

ρσU
ρUσ = 0

The connection coefficients can be found by

Γ0
µν = −1

2
(∂µgν0 + ∂νg0µ − ∂0gµν)

The only nonzero symbol has µ = ν = i, so we have

Γ0
ii = ȧa =

ȧ

a
gii

The geodesic equation is thus

dU0

dλ
+
ȧ

a
giiU

iU i = 0

dU0

dλ
+
ȧ

a
|U|2 = 0

Now recall that
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(U0)2 − |U|2 = 0 Massless

(U0)2 − |U|2 = 1 Massive

So we can clearly see that U0dU0 = |U|d|U| so our geodesic equation becomes

1

U0

d|U|
dλ

+
ȧ

a
|U| = 0

Noting that U0 = dt/dλ yields

|U̇|+ ȧ

a
|U| = 0

Solving this yields |U| ∼ a−1, which, in the case of a massless particle, implies that U0 ∼ a−1 as well. Since
this is related to the particles energy, we can assert that (for massless particles) E ∼ a−1. This means

E1

E2
=
a2
a1

Lets compare the distributions of particles at T1, E1 and T2, E2

f(E1, T1) =
1

eE1/T1 ± 1

=
1

e
a2E2
a1T1 ± 1

Now since we also know that T ∼ a−1, we have

T1
T2

=
a2
a1

So we have

f(E1, T1) =
1

e
a2E2
a1T1 ± 1

=
1

eE2/T2 ± 1
= f(E2, T2)

Therefore, the spectrum retains its shape with the expansion of spacetime.

b) No, the reason why the spectrum was preserved in part (a) was due to the fact that the spectrum was
fully characterized by the ratio E/T . Any spectrum characterized only by this ratio (or any power of this
ratio) will be preserved under expansion, but not otherwise. For example, a spectrum of Bremsstrahlung
produced photons follows an E−1 distribution, and will be distorted by expansion.

c) No, any spectrum with only an E/T dependence will be preserved, since temperature and energy redshift
in the same way. Maxwell Boltzmann, Fermi Dirac, and Bose Einstein spectrums will all be preserved (for
massless particles, and no chemical potential).
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4. In class I mentioned that it is not possible in Standard Big Bang cosmology to explain the observed spatial
flatness of the universe today. To understand this problem, compute the temperature evolution of Ω − 1
where Ω = ρ/ρc, and ρc is the energy density of a spatially flat universe. Show that this quantity decreases
rapidly as the temperature increases. What does this mean for the initial conditions in the very early
universe if these are able to reproduce what we see today?

Solution

Recall that the density parameter is

Ω =
8πG

3H2
ρ =

ρ

ρc

So

ρc =
3H2

8πG

If we recall the Friedmann equation, we have

(
ȧ

a

)2

=
8πGρ

3
− κ

a2

Since H = ȧ/a, we can easily rewrite this as

Ω− 1 =
κ

H2a2
=

κ

ȧ2

Where κ represents the curvature of the universe (κ < 0: open, κ = 0: flat, κ > 0 : closed).

For simplicity, we will consider the universe at the interface of matter-radiation equality. Call the scale
factor at this time aeq = 1. In the radiation domination era, a ∼ t1/2 (so H ∼ t−1). Since T ∼ a−1 from a
previous problem, we can note that

Teq
T

=
a

aeq
= a

Where Teq is the temperature of the universe at matter-radiation equality. We also have the ratio

aeq
a

=

(
teq
t

)1/2

−→ a =

(
t

teq

)1/2

ȧ =
1

2
t−1/2eq t−1/2 =

1

2
t−1eq a

−1 =
1

2teq

T

Teq

To see the temperature evolution of the density parameter, lets compute the time derivative

d

dt
(Ω− 1) =

d

dt

( κ
ȧ2

)
Ω̇ = 4κt2eqT

2
eq

d

dt
(T−2)

= −8κt2eqT
2
eq

Ṫ

T 3
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Lets compare this with the density parameter itself

Ω = 4t2eqκ
T 2
eq

T 2
Ω̇ = −8κt2eq

T 2
eq

T 2
· Ṫ
T

If we ignore numerical factors of teq, Teq, κ, and note that if we start from some early time and evolve

forward, T > 0, Ṫ < 0 we get the following scaling of the density parameter and its derivative

Figure 2: Temperature evolution of the density parameter and its derivative, in scaled units. Plotted with an
initial temperature T = 1000 and final temperature T = 10 (in these scaled units). Note the temperature
decreases along the x axis.

From the above figure, it is clear that Ω blows up from its initial value as the temperature decreases. Given
that the temperature today is T ∼ 2.7K, the range of parameters plotted is extremely conservative. Since
the density parameter Ω is observed to be so small today (consistent with a flat universe), the universe
would have had to be much more flat at very early times. Is there a natural mechanism that can conserve
the spatial flatness of the universe? Such a topic is an open problem in cosmology.
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