Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmolog

Inflation

String gas

Conclusions

What was before the Big Bang?

Robert Brandenberger McGill University

February 21, 2013

Outline

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

What is Cosmology?

2 Framework

- Space-Time
- Standard Big Bang Cosmology
- Inflationary Cosmology

Plan

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology Inflation

Conclusions

What is Cosmology?

Framework

- Space-Time
- Standard Big Bang Cosmology
- Inflationary Cosmology
- 4 String Cosmology
- 5 Conclusions

Early Universe	
R. Branden- berger	
Cosmology Framework Space-Time Std. Cosmology	1. Understand origin and early evolution of the universe.
	 Was there a "Big Bang"? What was before the "Big Bang"?

Early Universe R. Branden- berger	
Cosmology Framework Space-Time Std. Cosmology Inflation String gas Conclusions	 Understand origin and early evolution of the universe. What is the "Big Bang"? Was there a "Big Bang"? What was before the "Big Bang"?

2. Explain observed large-scale structure.

Early Universe R. Branden- berger	
Cosmology Framework Space-Time Std. Cosmology Inflation String gas Conclusions	 Understand origin and early evolution of the universe. What is the "Big Bang"? Was there a "Big Bang"? What was before the "Big Bang"?
	2. Explain observed large-scale structure.

Early Universe R. Branden- berger	
Cosmology Framework Space-Time Std. Cosmology Inflation String gas Conclusions	 Understand origin and early evolution of the universe. What is the "Big Bang"? Was there a "Big Bang"? What was before the "Big Bang"?

2. Explain observed large-scale structure.

Early Universe R. Branden- berger	
Cosmology Framework Space-Time Std. Cosmology Inflation String gas Conclusions	 Understand origin and early evolution of the universe. What is the "Big Bang"? Was there a "Big Bang"? What was before the "Big Bang"?

2. Explain observed large-scale structure.

Optical Telescopes: Gemini Telescope

Galaxies: Building Blocks of the Cosmology

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology Inflation String gas Conclusions

Large-Scale Structure

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology Inflation String gas
- Conclusions

F: Shapley Concentration/Abell 3558

Supercluster From: talk by O. Lahav

Microwave Telescopes on the Earth: ACT Telescope

Microwave Telescopes on the Earth: SPT Telescope

Microwave Telescopes in Space: WMAP Telescope

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology Inflation String gas Conclusions

Isotropic CMB Background

Anisotropies in the Cosmic Microwave Background (CMB)

Credit: NASA/WMAP Science Team

Quantification of the CMB data

Credit: NASA/WMAP Science Team

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- 1. Understand origin and early evolution of the universe.
 - What is the "Big Bang"?
 - Was there a "Big Bang"?
 - What was before the "Big Bang"?
- 2. Explain observed large-scale structure.
 - Patterns in the distribution of galaxies on large scales.
 - Anisotropies in CMB maps.
- 3. Make predictions for future observations.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- 1. Understand origin and early evolution of the universe.
 - What is the "Big Bang"?
 - Was there a "Big Bang"?
 - What was before the "Big Bang"?
- 2. Explain observed large-scale structure.
 - Patterns in the distribution of galaxies on large scales.
 - Anisotropies in CMB maps.
- 3. Make predictions for future observations.

Plan

Early Universe

R. Brandenberger

Cosmology

Framework

Space-Time Std. Cosmolog

Inflation

String gas

Conclusions

What is Cosmology?

2 Framework

Space-Time

Standard Big Bang Cosmology

Inflationary Cosmology

4 String Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

The Universe is:

Space-time

Matter which lives in space-time.

To describe the Universe:

- Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
- More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

The Universe is:

- Space-time
- Matter which lives in space-time.

o describe the Universe:

- Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
- More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

The Universe is:

Space-time

• Matter which lives in space-time.

To describe the Universe:

• Space-time described by Einstein's theory of General Relativity.

Matter as described by Physics.

 More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Space-time
- Matter which lives in space-time.
- To describe the Universe:
 - Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
 - More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Space-time
- Matter which lives in space-time.
- To describe the Universe:
 - Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
 - More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Space-time
- Matter which lives in space-time.
- To describe the Universe:
 - Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
 - More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

The Universe is:

Space-time

• Matter which lives in space-time.

To describe the Universe:

- Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
- More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Space-time
- Matter which lives in space-time.
- To describe the Universe:
 - Space-time described by Einstein's theory of General Relativity.
 - Matter as described by Physics.
 - More specifically: matter described on large scale by classical physics, on small scales by quantum mechanics and on even smaller scales by superstring theory ?

Mass curves Space-Time

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

String gas

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Space-time dynamical (no longer absolute like in Newtonian theory)
- Matter curves space-time: Space-time is dynamical.
- Note: Newton's gravitational force is a consequence of the curvature of space.
- Einstein Equivalence Principle determines the motion of matter in curved space-time.
- Space with a homogeneous distribution of matter cannot be static it must expand (or contract).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Space-time dynamical (no longer absolute like in Newtonian theory)
- Matter curves space-time: Space-time is dynamical.
- Note: Newton's gravitational force is a consequence of the curvature of space.
- Einstein Equivalence Principle determines the motion of matter in curved space-time.
- Space with a homogeneous distribution of matter cannot be static it must expand (or contract).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Space-time dynamical (no longer absolute like in Newtonian theory)
- Matter curves space-time: Space-time is dynamical.
- Note: Newton's gravitational force is a consequence of the curvature of space.
- Einstein Equivalence Principle determines the motion of matter in curved space-time.
- Space with a homogeneous distribution of matter cannot be static it must expand (or contract).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Space-time dynamical (no longer absolute like in Newtonian theory)
- Matter curves space-time: Space-time is dynamical.
- Note: Newton's gravitational force is a consequence of the curvature of space.
- Einstein Equivalence Principle determines the motion of matter in curved space-time.
- Space with a homogeneous distribution of matter cannot be static it must expand (or contract).

The Expanding Universe

Evidence for the Expansion of Space

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Standard Big Bang Cosmology (SBB): the old paradigm of cosmology (ca. 1960).

ne SBB is based on:

- Cosmological principle: universe homogeneous and isotropic on large scales.
- General Relativity governing dynamics of space-time.
- Classical matter as source in the Einstein equations.
- Classical matter: cold (pressure-less) matter (describing the galaxies) + radiation(describing the CMB).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Standard Big Bang Cosmology (SBB): the old paradigm of cosmology (ca. 1960).

The SBB is based on:

• Cosmological principle: universe homogeneous and isotropic on large scales.

General Relativity governing dynamics of space-time.

Classical matter as source in the Einstein equations.

 Classical matter: cold (pressure-less) matter (describing the galaxies) + radiation(describing the CMB).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Standard Big Bang Cosmology (SBB): the old paradigm of cosmology (ca. 1960).

The SBB is based on:

• Cosmological principle: universe homogeneous and isotropic on large scales.

• General Relativity governing dynamics of space-time.

Classical matter as source in the Einstein equations.

 Classical matter: cold (pressure-less) matter (describing the galaxies) + radiation(describing the CMB).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Standard Big Bang Cosmology (SBB): the old paradigm of cosmology (ca. 1960).

The SBB is based on:

- Cosmological principle: universe homogeneous and isotropic on large scales.
- General Relativity governing dynamics of space-time.
- Classical matter as source in the Einstein equations.

 Classical matter: cold (pressure-less) matter (describing the galaxies) + radiation(describing the CMB).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Standard Big Bang Cosmology (SBB): the old paradigm of cosmology (ca. 1960).

The SBB is based on:

- Cosmological principle: universe homogeneous and isotropic on large scales.
- General Relativity governing dynamics of space-time.
- Classical matter as source in the Einstein equations.
- Classical matter: cold (pressure-less) matter (describing the galaxies) + radiation(describing the CMB).

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• The universe is expanding now.

In the past it was hotter and more dense.

• Thus, it was expanding faster in the past.

• At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.

• This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• The universe is expanding now.

• In the past it was hotter and more dense.

Thus, it was expanding faster in the past.

• At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.

• This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite.
 A finite box of space had zero size at that time.
- This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite A finite box of space had zero size at that time.
- This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.

• This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.
- This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.
- This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.
- This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- The universe is expanding now.
- In the past it was hotter and more dense.
- Thus, it was expanding faster in the past.
- At a finite time in the past the temperature was infinite . A finite box of space had zero size at that time.
- This is the Big Bang!

What is the Big Bang? What was before the Big Bang?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• Universe begins as a homogeneous and very hot fireball.

- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light
- Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.

Space expands and matter cools.

- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light

Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light
- Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light
- Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light

Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light

• Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light
- Now the age of the universe is about 13 billion years.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Universe begins as a homogeneous and very hot fireball.
- Initially radiation dominates: hot plasma.
- Space expands and matter cools.
- After about 30,000 years cold matter starts to dominate.
- After about 300,000 years atoms (hydrogen) forms and universe becomes transparent to light
- Now the age of the universe is about 13 billion years.

Early Universe R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology Inflation String gas

Credit: NASA/WMAP Science Team

Spectrometer

Early Universe	E
R. Branden- berger	

Cosmology

Framework Space-Time Std. Cosmology Inflation String gas Conclusions

> < 回 > < 目 > < 目 > 、 目 > 、 目 < の へ () 26/68

Successes of the SBB Model

Key success: Existence and black body nature of the CMB.

27/68

Unanswered Questions

Conceptual Problems of the SBB Model

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

No explanation for the homogeneity, spatial flatness and large size and entropy of the universe. Horizon problem of the SBB:

Conceptual Problems of the SBB Model II

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- ightarrow
 ightarrow Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- ightarrow
 ightarrow Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down and quantum mechanics and particle physics give the right description of matter.
 - ightarrow
 ightarrow Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
 - ho
 ightarrow Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- $\bullet \rightarrow$ Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- $\bullet \rightarrow$ Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- $\bullet \rightarrow$ Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.
What to do?

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

With a little help from a friend , the particle physicist:

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- $\bullet \rightarrow$ Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

What to do?

Early Universe

R. Brandenberger

Cosmology

- Framework Space-Time Std. Cosmology
- Inflation
- String gas
- Conclusions

With a little help from a friend , the particle physicist:

- At very high temperatures close to the Big Bang classical physics breaks down - and quantum mechanics and particle physics give the right description of matter.
- $\bullet \rightarrow$ Standard Big Bang theory breaks down.
- In the very early universe matter is a plasma of elementary particles.
- All described in terms of quantum fields.
- Quantum field (scalar fields) can lead to a different expansion rate of space namely inflationary expansion.

Plan

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

What is Cosmology?

Framework

Space-Time

Standard Big Bang Cosmology

Inflationary Cosmology

4 String Cosmology

5 Conclusions

Time line of inflationary cosmology

• *t_R*: inflation ends, reheating

Successes of Inflationary Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

The Inflationary Universe Scenario is the current paradigm of early universe cosmology (1980).

ouccesses.

- Solves horizon problem
- Solves flatness problem
- Solves size/entropy problem
- Provides a causal mechanism of generating primordial cosmological perturbations (Chibisov & Mukhanov, 1981).

Successes of Inflationary Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

The Inflationary Universe Scenario is the current paradigm of early universe cosmology (1980).

Solves horizon problem

Successes:

- Solves flatness problem
- Solves size/entropy problem

 Provides a causal mechanism of generating primordial cosmological perturbations (Chibisov & Mukhanov, 1981).

Successes of Inflationary Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

The Inflationary Universe Scenario is the current paradigm of early universe cosmology (1980).

Successes:

- Solves horizon problem
- Solves flatness problem
- Solves size/entropy problem
- Provides a causal mechanism of generating primordial cosmological perturbations (Chibisov & Mukhanov, 1981).

Credit: NASA/WMAP Science Team

Credit: NASA/WMAP Science Team

38/68

Successes of Inflation

– ari	v I		ы	77	α r	-	0
Lan	v .	U		v	ΞI	5	\mathbf{c}
	-						

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- inflation renders the universe large, homogeneous and spatially flat
- classical matter redshifts \rightarrow matter vacuum remains
- quantum vacuum fluctuations: seeds for the observed structure [Chibisov & Mukhanov, 1981]

Status of the Big Bang in Inflationary Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas Conclusion:

- The inflationary phase had a beginning.
- There was a Big Bang before the period of inflation.

Jnanswered questions:

- What is the Big Bang?
 - What was before the Big Bang?

Note: quantum field theory is not applicable very close to the singularity.

Status of the Big Bang in Inflationary Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas Conclusion

- The inflationary phase had a beginning.
- There was a Big Bang before the period of inflation.

Unanswered questions:

- What is the Big Bang?
- What was before the Big Bang?

Note: quantum field theory is not applicable very close to the singularity.

Status of the Big Bang in Inflationary Cosmology

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas Conclusion

- The inflationary phase had a beginning.
- There was a Big Bang before the period of inflation.

Unanswered questions:

- What is the Big Bang?
- What was before the Big Bang?

Note: quantum field theory is not applicable very close to the singularity.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas Conclusion

- In spite of the phenomenological successes, the inflationary scenario suffers from several conceptual problems.
- In light of these problems we need to look for input from new fundamental physics to construct a new theory which will overcome these problems.
- Question: Can Superstring theory lead to a new and improved paradigm?
- Question: Can this new paradigm be tested in cosmological observations?
- Question: Was there a Big Bang ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

- String gas
- Conclusions

- In spite of the phenomenological successes, the inflationary scenario suffers from several conceptual problems.
- In light of these problems we need to look for input from new fundamental physics to construct a new theory which will overcome these problems.
- Question: Can Superstring theory lead to a new and improved paradigm?
- Question: Can this new paradigm be tested in cosmological observations?
- Question: Was there a Big Bang ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

- String gas
- Conclusions

- In spite of the phenomenological successes, the inflationary scenario suffers from several conceptual problems.
- In light of these problems we need to look for input from new fundamental physics to construct a new theory which will overcome these problems.
- Question: Can Superstring theory lead to a new and improved paradigm?
- Question: Can this new paradigm be tested in cosmological observations?
- Question: Was there a Big Bang ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

- String gas
- Conclusions

- In spite of the phenomenological successes, the inflationary scenario suffers from several conceptual problems.
- In light of these problems we need to look for input from new fundamental physics to construct a new theory which will overcome these problems.
- Question: Can Superstring theory lead to a new and improved paradigm?
- Question: Can this new paradigm be tested in cosmological observations?
- Question: Was there a Big Bang ?

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

- String gas
- Conclusions

- In spite of the phenomenological successes, the inflationary scenario suffers from several conceptual problems.
- In light of these problems we need to look for input from new fundamental physics to construct a new theory which will overcome these problems.
- Question: Can Superstring theory lead to a new and improved paradigm?
- Question: Can this new paradigm be tested in cosmological observations?
- Question: Was there a Big Bang ?

Conceptual Problems of Inflationary Cosmology

Applicability of General Relativity

Trans-Planckian Problem

- Success of inflation: At early times scales are inside the Hubble radius → causal generation mechanism is possible.
- **Problem:** If time period of inflation is slightly more than the minimal length it must have, then the wavelength is smaller than the Planck length at the beginning of inflation
- 43/68

Singularity Problem

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Standard cosmology: Penrose-Hawking theorems → initial singularity → incompleteness of the theory.

Inflationary cosmology: In scalar field-driven inflationary models the initial singularity persists [Borde and Vilenkin] \rightarrow incompleteness of the theory.

Singularity Problem

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Standard cosmology: Penrose-Hawking theorems → initial singularity → incompleteness of the theory.
- Inflationary cosmology: In scalar field-driven inflationary models the initial singularity persists [Borde and Vilenkin] → incompleteness of the theory.

Singularity Problem

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Standard cosmology: Penrose-Hawking theorems → initial singularity → incompleteness of the theory.
- Inflationary cosmology: In scalar field-driven inflationary models the initial singularity persists [Borde and Vilenkin] → incompleteness of the theory.

Applicability of GR

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

 Einstein's theory breaks down at extremely high densities.

• In models of inflation, the energy scale of at which inflation takes place is close to the limiting scale for the validity of Einstein's theory.

We cannot trust the predictions made using GR.

Applicability of GR

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Einstein's theory breaks down at extremely high densities.
- In models of inflation, the energy scale of at which inflation takes place is close to the limiting scale for the validity of Einstein's theory.

We cannot trust the predictions made using GR.

Applicability of GR

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Einstein's theory breaks down at extremely high densities.
- In models of inflation, the energy scale of at which inflation takes place is close to the limiting scale for the validity of Einstein's theory.
- We cannot trust the predictions made using GR.

Zones of Ignorance

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• The current cosmological paradigm has serious conceptual problems.

- We need a new paradigm of very early universe cosmology.
- With a little help from a friend the string theorist!
- New cosmological model motivated by superstring theory: String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989].
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The current cosmological paradigm has serious conceptual problems.
- We need a new paradigm of very early universe cosmology.
- With a little help from a friend the string theorist!
- New cosmological model motivated by superstring theory: String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989].
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

- String gas
- Conclusions

- The current cosmological paradigm has serious conceptual problems.
- We need a new paradigm of very early universe cosmology.
- With a little help from a friend the string theorist!
- New cosmological model motivated by superstring theory: String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989].
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

- String gas
- Conclusions

- The current cosmological paradigm has serious conceptual problems.
- We need a new paradigm of very early universe cosmology.
- With a little help from a friend the string theorist!
- New cosmological model motivated by superstring theory: String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989].
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].
Message I

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The current cosmological paradigm has serious conceptual problems.
- We need a new paradigm of very early universe cosmology.
- With a little help from a friend the string theorist!
- New cosmological model motivated by superstring theory: String Gas Cosmology (SGC) [R.B. and C. Vafa, 1989].
- New structure formation scenario emerges from SGC [A. Nayeri, R.B. and C. Vafa, 2006].

Message II

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

String Gas Cosmology makes testable predictions for cosmological observations

- Blue tilt in the spectrum of gravitational waves [R.B., A. Nayeri, S. Patil and C. Vafa, 2006]
- Line discontinuities in CMB anisotropy maps [N. Kaiser and A. Stebbins, 1984]
- Line discontinuities can be detected using the CANNY edge detection algorithm [S. Amsel, J. Berger and R.B., 2007, R. Danos and R.B., 2008, 2009]

Message II

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

String Gas Cosmology makes testable predictions for cosmological observations

- Blue tilt in the spectrum of gravitational waves [R.B., A. Nayeri, S. Patil and C. Vafa, 2006]
- Line discontinuities in CMB anisotropy maps [N. Kaiser and A. Stebbins, 1984]
- Line discontinuities can be detected using the CANNY edge detection algorithm [S. Amsel, J. Berger and R.B., 2007, R. Danos and R.B., 2008, 2009]

Message II

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

String Gas Cosmology makes testable predictions for cosmological observations

- Blue tilt in the spectrum of gravitational waves [R.B., A. Nayeri, S. Patil and C. Vafa, 2006]
- Line discontinuities in CMB anisotropy maps [N. Kaiser and A. Stebbins, 1984]
- Line discontinuities can be detected using the CANNY edge detection algorithm [S. Amsel, J. Berger and R.B., 2007, R. Danos and R.B., 2008, 2009]

Plan

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

What is Cosmology?

Framework

- Space-Time
- Standard Big Bang Cosmology

Inflationary Cosmology

String Cosmology

5 Conclusions

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• String theory is a quantum theory of all forces of nature including gravity.

String theory unifies all forces of nature.

• Basic objects: elementary strings. Compared to elementary point particles.

• String theory is mathematically consistent only in 10 space-time dimensions.

Thus, string theory predicts extra spatial dimensions.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- String theory is a quantum theory of all forces of nature including gravity.
- String theory unifies all forces of nature.
- Basic objects: elementary strings. Compared to elementary point particles.
- String theory is mathematically consistent only in 10 space-time dimensions.
- Thus, string theory predicts extra spatial dimensions.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- String theory is a quantum theory of all forces of nature including gravity.
- String theory unifies all forces of nature.
- Basic objects: elementary strings. Compared to elementary point particles.
- String theory is mathematically consistent only in 10 space-time dimensions.
- Thus, string theory predicts extra spatial dimensions.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- String theory is a quantum theory of all forces of nature including gravity.
- String theory unifies all forces of nature.
- Basic objects: elementary strings. Compared to elementary point particles.
- String theory is mathematically consistent only in 10 space-time dimensions.
- Thus, string theory predicts extra spatial dimensions.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- String theory is a quantum theory of all forces of nature including gravity.
- String theory unifies all forces of nature.
- Basic objects: elementary strings. Compared to elementary point particles.
- String theory is mathematically consistent only in 10 space-time dimensions.
- Thus, string theory predicts extra spatial dimensions.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- String theory is a quantum theory of all forces of nature including gravity.
- String theory unifies all forces of nature.
- Basic objects: elementary strings. Compared to elementary point particles.
- String theory is mathematically consistent only in 10 space-time dimensions.
- Thus, string theory predicts extra spatial dimensions.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- String theory is a quantum theory of all forces of nature including gravity.
- String theory unifies all forces of nature.
- Basic objects: elementary strings. Compared to elementary point particles.
- String theory is mathematically consistent only in 10 space-time dimensions.
- Thus, string theory predicts extra spatial dimensions.

Principles R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989)*

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe.

Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes.
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature.
- New degrees of freedom: string winding modes.
- Leads to a **new symmetry**: physics at large *R* is equivalent to physics at small *R*.

Principles R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989)*

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe. Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes.
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature.
- New degrees of freedom: string winding modes.
- Leads to a new symmetry: physics at large *R* is equivalent to physics at small *R*.

Principles R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989)*

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

Idea: make use of the new symmetries and new degrees of freedom which string theory provides to construct a new theory of the very early universe. Assumption: Matter is a gas of fundamental strings Assumption: Space is compact, e.g. a torus. Key points:

- New degrees of freedom: string oscillatory modes.
- Leads to a maximal temperature for a gas of strings, the Hagedorn temperature.
- New degrees of freedom: string winding modes.
- Leads to a new symmetry: physics at large *R* is equivalent to physics at small *R*.

"Large" is Equivalent to "Small" in String Theory

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

T-Duality

- Momentum modes: $E_n = n/R$
- Winding modes: $E_m = mR$
- Duality: $R \rightarrow 1/R$ $(n,m) \rightarrow (m,n)$
- Mass spectrum of string states unchanged

Temperature in String Cosmology

R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989)*

Temperature in Standard and Inflationary Cosmology

Dynamics

String Gas Cosmology R.B. and C. Vafa, *Nucl. Phys. B316:391 (1989*)

ロ > < 一 > < 一 > < 一 > < 一 > < 一 > < 一 > < 一 > < 一 > < (一) < < (一) < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < (

Dimensionality of Space in SGC

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• Begin with all 9 spatial dimensions small, initial temperature close to $T_H \rightarrow$ winding modes about all spatial sections are excited.

• Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

Decay only possible in three large spatial dimensions.

• \rightarrow dynamical explanation of why there are exactly three large spatial dimensions.

Dimensionality of Space in SGC

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• Begin with all 9 spatial dimensions small, initial temperature close to $T_H \rightarrow$ winding modes about all spatial sections are excited.

• Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

• Decay only possible in three large spatial dimensions.

 → dynamical explanation of why there are exactly three large spatial dimensions.

Dimensionality of Space in SGC

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- Begin with all 9 spatial dimensions small, initial temperature close to $T_H \rightarrow$ winding modes about all spatial sections are excited.
- Expansion of any one spatial dimension requires the annihilation of the winding modes in that dimension.

- Decay only possible in three large spatial dimensions.
- → dynamical explanation of why there are exactly three large spatial dimensions.

Structure formation in inflationary cosmology

N.B. Perturbations originate as quantum vacuum fluctuations.

Background for string gas cosmology

Structure formation in string gas cosmology

A. Nayeri, R.B. and C. Vafa, *Phys. Rev. Lett. 97:021302 (2006)*

N.B. Perturbations originate as thermal string gas fluctuations.

Power spectrum of cosmological fluctuations

Anisotropies in the Cosmic Microwave Background (CMB)

Credit: NASA/WMAP Science Team

Quantification of the CMB data

Credit: NASA/WMAP Science Team

Spectrum of Gravitational Waves

- Early UniverseR. Branden-
bergerCosmologyFramework
space Time
stu CosmologyInflation
String gas
ConclusionsConclusions
 - There was no beginning of time.

- Early Universe

 R. Brandenberger

 Cosmology

 Framework Stat Cosmology

 Stat Cosmology

 Inflation

 String gas

 Conclusions

 But: there was no Big Bang Singularity.
 - There was no beginning of time.

Early Universe R. Brandenberger Cosmology Framework Stat Cosmology Inflation String gas Complexing Complexing String gas Complexing Complexing String gas Complexing Compl

• But: there was no Big Bang Singularity.

There was no beginning of time.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

- The universe was very, very hot and dense 13 billion years ago.
- In this sense there was a hot "primordial" fireball.
- But: there was no Big Bang Singularity.
- There was no beginning of time.

Plan

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

What is Cosmology?

Framework

Space-Time

Standard Big Bang Cosmology

Inflationary Cosmology

Conclusions

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

Conclusions

• Cosmology is a vibrant field with lots of observational data.

• Paradigms of early universe cosmology have been developed.

• Paradigm 1: Standard Big Bang Model.

 Paradigm 2: Inflationary Universe scenario - current paradigm.

• In both Paradigms 1 and 2 there was a Big Bang singularity.

 Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.

• Superstring theory may provide a new paradigm.

 Superstring cosmology may resolve the Big Bang singularity.

• It is possible to observationally probe string cosmology.
Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- Cosmology is a vibrant field with lots of observational data.
- Paradigms of early universe cosmology have been developed.
- Paradigm 1: Standard Big Bang Model.
- Paradigm 2: Inflationary Universe scenario current paradigm.
- In both Paradigms 1 and 2 there was a Big Bang singularity.
- Paradigm 2 has conceptual problems → motivates the search for an improved paradigm.
- Superstring theory may provide a new paradigm.
- Superstring cosmology may resolve the Big Bang singularity.
- It is possible to observationally probe string cosmology.

Status of the "Big Bang"

Early Universe

R. Brandenberger

Cosmology

Framework Space-Time Std. Cosmology

Inflation

String gas

- We know that going back in time 13 billion years there was a very hot early phase, a primordial fireball.
- If this is what you mean by "Big Bang": then there WAS a "Big Bang".
- We do not know if there was a "Big Bang singularity", a beginning of time.
- Our current paradigms of early universe cosmology predict a beginning of time.
- But only if we extrapolate the models beyond where they can be used.
- Superstring theory may lead to a cosmology without a beginning of time.
- If this is true then there may not have been a "Big Bang" (singularity).