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Main Messages

There are alternatives to inflationary cosmology.
String Theory leads to a new paradigm for early
universe cosmology.
String Theory can be tested with cosmological
observations.
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Current Paradigm for Early Universe
Cosmology

The Inflationary Universe Scenario is the current paradigm
of early universe cosmology.
Successes:

Solves horizon problem
Solves flatness problem
Solves size/entropy problem
Provides a causal mechanism of generating primordial
cosmological perturbations (Chibisov & Mukhanov,
1981).
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Challenges for the Current Paradigm

In spite of the phenomenological successes, current
realizations of the inflationary scenario suffer from
several conceptual problems.
In light of these problems we need to look for input from
new fundamental physics to construct a new theory
which will overcome these problems.
Question: Can Superstring theory lead to a new and
improved paradigm?
Question: Can this new paradigm be tested in
cosmological observations?
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Review of Inflationary Cosmology

Context:
General Relativity
Scalar Field Matter

Metric : ds2 = dt2 − a(t)2dx2 (1)

Inflation:
phase with a(t) ∼ etH

requires matter with p ∼ −ρ
requires a slowly rolling scalar field ϕ
- in order to have a potential energy term
- in order that the potential energy term dominates
sufficiently long
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Time line of inflationary cosmology:

ti : inflation begins
tR: inflation ends, reheating
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Review of Inflationary Cosmology II

Space-time sketch of inflationary cosmology:

Note:
H = ȧ

a
curve labelled by k : wavelength of a fluctuation
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inflation renders the universe large, homogeneous and
spatially flat
classical matter redshifts→ matter vacuum remains
quantum vacuum fluctuations: seeds for the observed
structure [Chibisov & Mukhanov, 1981]
sub-Hubble→ locally causal
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Conceptual Problems of Inflationary
Cosmology

Nature of the scalar field ϕ (the “inflaton")
Conditions to obtain inflation (initial conditions, slow-roll
conditions, graceful exit and reheating)
Amplitude problem
Trans-Planckian problem
Singularity problem
Cosmological constant problem
Applicability of General Relativity

15 / 40



String
Cosmology

R. Branden-
berger

Inflation
Motivation

Inflation

Problems

Message

String gas
Principles

Features

Structure
Perturbations

Analysis

Conclusions

Trans-Planckian Problem

Success of inflation: At early times scales are inside
the Hubble radius→ causal generation mechanism is
possible.
Problem: If time period of inflation is more than 70H−1,
then λp(t) < lpl at the beginning of inflation
→ new physics MUST enter into the calculation of the
fluctuations.
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Cosmological Constant Problem

Quantum vacuum energy does not gravitate.
Why should the almost constant V (ϕ) gravitate?

V0

Λobs
∼ 10120 (2)
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Applicability of GR

In all approaches to quantum gravity, the Einstein action
is only the leading term in a low curvature expansion.
Correction terms may become dominant at much lower
energies than the Planck scale.
Correction terms will dominate the dynamics at high
curvatures.
The energy scale of inflation models is typically
η ∼ 1016GeV.
→ η too close to mpl to trust predictions made using
GR.
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Zones of Ignorance
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Message

Current realizations of inflation have conceptual
problems.
We need a new paradigm of very early universe
cosmology based on new fundamental physics.
Hypothesis: New paradigm based on Superstring
Theory.
New cosmological model motivated by superstring
theory: String Gas Cosmology (SGC) [R.B. and C.
Vafa, 1989]
New structure formation scenario emerges from SGC
[A. Nayeri, R.B. and C. Vafa, 2006].
Testable prediction for cosmological observations: Blue
tilt in the spectrum of gravitational waves [R.B., A.
Nayeri, S. Patil and C. Vafa, 2006]
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Principles
R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Idea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new
theory of the very early universe.
Assumption: Matter is a gas of fundamental strings
Assumption: Space is compact, e.g. a torus.
Key points:

New degrees of freedom: string oscillatory modes
Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature
New degrees of freedom: string winding modes
Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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T-Duality

T-Duality

Momentum modes: En = n/R
Winding modes: Em = mR
Duality: R → 1/R (n,m)→ (m,n)

Mass spectrum of string states unchanged
Symmetry of vertex operators
Symmetry at non-perturbative level→ existence of
D-branes
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Adiabatic Considerations
R.B. and C. Vafa, Nucl. Phys. B316:391 (1989)

Temperature-size relation in string gas cosmology
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Dynamics

Assume some action gives us R(t)
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Dynamics II

We will thus consider the following background dynamics for
the scale factor a(t):
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Dimensionality of Space in SGC

Begin with all 9 spatial dimensions small, initial
temperature close to TH → winding modes about all
spatial sections are excited.
Expansion of any one spatial dimension requires the
annihilation of the winding modes in that dimension.

Decay only possible in three large spatial dimensions.
→ dynamical explanation of why there are exactly three
large spatial dimensions.
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Theory of Cosmological Perturbations: Basics

Cosmological fluctuations connect early universe theories
with observations

Fluctuations of matter→ large-scale structure
Fluctuations of metric→ CMB anisotropies
N.B.: Matter and metric fluctuations are coupled

Key facts:

1. Fluctuations are small today on large scales
→ fluctuations were very small in the early universe
→ can use linear perturbation theory
2. Sub-Hubble scales: matter fluctuations dominate
Super-Hubble scales: metric fluctuations dominate
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Quantum Theory of Linearized Fluctuations
V. Mukhanov, H. Feldman and R.B., Phys. Rep. 215:203 (1992)

Step 1: Metric and matter including fluctuations

ds2 = a2[(1 + 2Φ)dη2 − (1− 2Φ)dx2] (3)
ϕ = ϕ0 + δϕ (4)

Note: Φ and δϕ related by Einstein constraint equations
Step 2: Expand the action for matter and gravity to second
order about the cosmological background:

S(2) =
1
2

∫
d4x

(
(v ′)2 − v,iv ,i +

z ′′

z
v2) (5)

v = a
(
δϕ+

z
a

Φ
)

(6)

z = a
ϕ′0
H

(7)
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Step 3: Resulting equation of motion (Fourier space)

v ′′k + (k2 − z ′′

z
)vk = 0 (8)

Features:

oscillations on sub-Hubble scales
squeezing on super-Hubble scales vk ∼ z
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Background for string gas cosmology
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Structure formation in string gas cosmology
A. Nayeri, R.B. and C. Vafa, Phys. Rev. Lett. 97:021302 (2006)

N.B. Perturbations originate as thermal string gas
fluctuations.
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Method

Calculate matter correlation functions in the Hagedorn
phase (neglecting the metric fluctuations)
For fixed k , convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = ti(k)

Evolve the metric fluctuations for t > ti(k) using the
usual theory of cosmological perturbations
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Extracting the Metric Fluctuations

Ansatz for the metric including cosmological perturbations
and gravitational waves:

ds2 = a2(η)
(
(1 + 2Φ)dη2 − [(1− 2Φ)δij + hij ]dx idx j) . (9)

Inserting into the perturbed Einstein equations yields

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 0
0(k)δT 0

0(k)〉 , (10)

〈|h(k)|2〉 = 16π2G2k−4〈δT i
j(k)δT i

j(k)〉 . (11)
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Power Spectrum of Cosmological Perturbations

Key ingredient: For thermal fluctuations:

〈δρ2〉 =
T 2

R6 CV . (12)

Key ingredient: For string thermodynamics in a compact
space

CV ≈ 2
R2/`3s

T (1− T/TH)
. (13)
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Power spectrum of cosmological fluctuations

PΦ(k) = 8G2k−1 < |δρ(k)|2 > (14)
= 8G2k2 < (δM)2 >R (15)
= 8G2k−4 < (δρ)2 >R (16)

= 8G2 T
`3s

1
1− T/TH

(17)

Key features:

scale-invariant like for inflation
slight red tilt like for inflation
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Spectrum of Gravitational Waves
R.B., A. Nayeri, S. Patil and C. Vafa, Phys. Rev. Lett. (2007)

Ph(k) = 16π2G2k−1 < |Tij(k)|2 > (18)

= 16π2G2k−4 < |Tij(R)|2 > (19)

∼ 16π2G2 T
`3s

(1− T/TH) (20)

Key ingredient for string thermodynamics

< |Tij(R)|2 >∼ T
l3s R4

(1− T/TH) (21)

Key features:

scale-invariant (like for inflation)
slight blue tilt (unlike for inflation)
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Key ingredient for string thermodynamics

< |Tij(R)|2 >∼ T
l3s R4

(1− T/TH) (21)

Key features:

scale-invariant (like for inflation)
slight blue tilt (unlike for inflation)
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Conclusions

String Gas Cosmology: Model of cosmology of the very
early universe based on new degrees of freedom and
new symmetries of superstring theory.
SGC→ nonsingular cosmology
SGC→ natural explanation of the number of large
spatial dimensions.
SGC→ new scenario of structure formation
Scale invariant spectrum of cosmological fluctuations
(like in inflationary cosmology).
Spectrum of gravitational waves has a small blue tilt
(unlike in inflationary cosmology).
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