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Conformal block decomposition

All CFTs have OPE (here scalar)

φ(x)φ(0) =
∑
O

fφφOC (x , ∂)O(0)

Consider using it for 12 and 34 (s-channel) in d ≥ 3

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =

∑
O f 2

φφOG
∆φ

∆O,`O
(z , z̄)

(x12)2∆φ(x34)2∆φ

with G
∆φ

∆O,`O
conformal blocks and z , z̄ conformal cross-ratios

Write sum in terms of twist τ = ∆− `
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Crossing symmetry

Can do 14 and 23 instead (t-channel) and get same thing∑
O

f 2
φφOG

∆φ

τ,` (z , z̄) =

(
zz̄

(1− z)(1− z̄)

)∆φ∑
O′

f 2
φφO′G

∆φ

τ ′,`′(1− z , 1− z̄)
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Lightcone limit

Take z̄ → 1, t-channel blocks behave as

G
∆φ

τ ′,`′(1− z , 1− z̄) ≈ (1− z̄)
τ ′
2 K∆′+`′(1− z)

⇒ t-channel dominated by identity!

Further take z → 0, s-channel blocks behave as

G
∆φ

τ,` (z , z̄) ≈ z
τ
2 log (1− z̄)

Crossing symmetry becomes

∑
τ,`

f 2
φφOz

τ
2 log (1− z̄) =

z∆φ

(1− z̄)∆φ
+ ...
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Double twist operators

Impossible to reproduce t-channel singularity with finite
number of terms

⇒ Need infinite family of operators with

τ = 2∆φ + 2n

for `→∞

Call these operators “double twist”, schematically
[φφ]n,` = φ�n∂`φ

Explicitely inverting crossing gives the OPE coefficients
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Mean Field Theory

t-channel identity ⇒ s-channel ”double twists”

Reproduces Mean Field Theory: CFT with correlators given by
Wick contractions, contain only double twist operators

RESULT: Every CFT behaves as MFT at large spin

Including subleading operators in t-channel gives corrections to
OPE and anomalous dimensions

γn,` ∼
1

`τ
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Regge trajectories
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Inversion formula

Can write 4-point function as

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 ∼
∞∑
`=0

∫ d
2

+i∞

d
2
−i∞

d∆C (∆, `)G∆,`(z , z̄)

where C has poles at physical operator with residues giving the
OPE coefficients

Simon’s formula inverts this

C (∆, `) ∝
∫ 1

0

∫ 1

0
dzdz̄ M∆,`(z , z̄)dDisc[〈φ(x1)φ(x2)φ(x3)φ(x4)〉]
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6j symbols

Inserting identity in inversion formula gives MFT result

Inserting other operators gives corrections

Inversion of single block = 6j symbol

⇒ 6j symbols rewrite t-channel data into s-channel data
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Problems in 2d

What is wrong in 2d?

Virasoro blocks not known

No twist gap (T , T 2, etc. have zero twist)

FKW already studied this in large c limit for HHLL with
Virasoro vacuum block

We will take finite c and reproduce their results.
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2d CFT

Conformal transformations factorize into holomorphic and
anti-holomorphic

⇒ Conformal blocks factorize

G (z , z̄) = F(h|z)F̄(h̄|z̄)

with h = ∆ + ` and h̄ = ∆− `

Crossing symmetry for 〈O1(0)O2(z , z̄)O2(1)O1(∞)〉 is now∑
s

(f12s)2FS(hs , z)F̄S(h̄s , z̄) =∑
t

f11t f22tFT (ht , 1− z)F̄T (h̄t , 1− z̄)
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Liouville notation

Need to use new notation:

c = 1 + 6Q2 , Q = b + b−1 , h = α(Q − α)

(h, c)⇒ (α, b)

Operators separate in two ranges:

Discrete: 0 < h < c−1
24 ←→ 0 < α < Q

2

Continuum: h ≥ c−1
24 ←→ α = Q

2 + iP
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Definition of the kernel

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel
blocks

FT (αt , 1− z) =

∫
C

dαs

2i
SαsαtFS(αs , z)

Impressive that it is known since blocks themselves not known

Poles at αs = α1 + α2 + mb + nb−1 and reflexions α→ Q − α

For αt = 0, single poles

For αt 6= 0, double poles
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Analytic structure

When α1 + α2 >
Q
2 , C is simple

αs

Q
2

Q0

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+ + + + + + + + +

+++++++++

+++++++++

+++++++++

+++++++++
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Analytic structure

When α1 +α2 <
Q
2 , poles at αm = α1 +α2 +mb can cross axis

αs

Q
2

Q 3Q
20−Q

2
−Q

+ + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + +

+ + + +++++++++++++++++

++++++++++++

++++++

++
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Support of the kernel

For α1 + α2 >
Q
2 ,

FT (αt) =

∫ ∞
0

dP SαsαtFS

(
αs =

Q

2
+ iP

)

For α1 + α2 <
Q
2 ,

FT (αt) =− 2π
∑
m

Res
αs=αm

{SαsαtFS(αs)}

+

∫ ∞
0

dP SαsαtFS

(
αs =

Q

2
+ iP

)
with sum over αm < Q

2
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Crossing with fusion

Rewrite t-channel into s-channel with kernel tells us what must
be there in the s-channel to reproduce what appears in
t-channel.

Consider α1 + α2 <
Q
2 and ᾱ1 + ᾱ2 >

Q
2 and

individual t-channel exchange∫
?
dαsdᾱsρ12sFS(αs)F̄S(ᾱs) =

∫ ∞
0

dP̄ S̄ᾱs ᾱt F̄S

(
ᾱs =

Q

2
+ i P̄

)
f11t f22t

[
−2π

∑
m

Res
αs=αm

{SαsαtFS(αs)}+∫ ∞
0

dP SαsαtFS

(
αs =

Q

2
+ iP

)]



The Virasoro
fusion kernel

and its
applications

Yan Gobeil

The lightcone
bootstrap

The fusion
kernel

Kernel and
CFT data

Large c limits

Crossing with fusion

Rewrite t-channel into s-channel with kernel tells us what must
be there in the s-channel to reproduce what appears in
t-channel.

Consider α1 + α2 <
Q
2 and ᾱ1 + ᾱ2 >

Q
2 and

individual t-channel exchange∫
?
dαsdᾱsρ12sFS(αs)F̄S(ᾱs) =

∫ ∞
0

dP̄ S̄ᾱs ᾱt F̄S

(
ᾱs =

Q

2
+ i P̄

)
f11t f22t

[
−2π

∑
m

Res
αs=αm

{SαsαtFS(αs)}+∫ ∞
0

dP SαsαtFS

(
αs =

Q

2
+ iP

)]
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Virasoro MFT

What is needed to reproduce identity αt = ᾱt = 0?

1 Family of operators with α = αm < Q
2 (in discrete

spectrum) for each ᾱ in continuum ⇒ “Quantum” Regge
trajectories

2 Operators with α and ᾱ in continuum

OPE coefficients of Regge operators given by

ρ12m = −2π S̄ᾱs I Res
αs=αm

Sαs I

This is called Virasoro Mean Field Theory!
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1 Family of operators with α = αm < Q
2 (in discrete
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αs=αm

Sαs I

This is called Virasoro Mean Field Theory!



The Virasoro
fusion kernel

and its
applications

Yan Gobeil

The lightcone
bootstrap

The fusion
kernel

Kernel and
CFT data

Large c limits

Virasoro MFT

What is needed to reproduce identity αt = ᾱt = 0?
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Corrections

Assume other operators give small corrections

(ρ12m + δρ12m)FS(αm + δαm)F̄S ≈F̄S (ρ12mFS(αm)+

δρ12mFS(αm)+

ρ12mδαm∂FS(αm))

This leads to

δαm = f11t f22t
S̄ᾱs ᾱt

S̄ᾱs I

dRes
αs=αm

Sαsαt

Res
αs=αm

Sαs I

δρ12m = −2πf11t f22t S̄ᾱs ᾱt Res
αs=αm

Sαsαt

where dRes means the coefficient of double pole
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S̄ᾱs I
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Why dRes?

Taylor expanding double pole at x = x0 gives

s(x)f (x) =

(
dRes(s)

(x − x0)2
+

Res(s)

x − x0
+ s(x0)

)
×
(
f (x0) + (x − x0)f ′(x0)

)

=
f (x0) dRes(s)

(x − x0)2
+
f (x0) Res(s) + f ′(x0) dRes(s)

x − x0
+f ′(x0) Res(s)+...

⇒ Res(s f ) = f (x0) Res(s) + f ′(x0) dRes(s)
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Large spin asymptotics

At large ᾱs

δαm ∼ e−2πᾱt
√
`s

⇒ identity dominates at large spin!

Spectrum of Quantum Regge trajectories at large spin:

hm = h1 + h2 +m− 2(α1 +mb)(α2 +mb) +m(m+ 1)b2 + δhm
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√
`s

⇒ identity dominates at large spin!

Spectrum of Quantum Regge trajectories at large spin:

hm = h1 + h2 +m− 2(α1 +mb)(α2 +mb) +m(m+ 1)b2 + δhm



The Virasoro
fusion kernel

and its
applications

Yan Gobeil

The lightcone
bootstrap

The fusion
kernel

Kernel and
CFT data

Large c limits

Quantum Regge trajectories



The Virasoro
fusion kernel

and its
applications

Yan Gobeil

The lightcone
bootstrap

The fusion
kernel

Kernel and
CFT data

Large c limits

Outline

1 The lightcone bootstrap

2 The fusion kernel

3 Kernel and CFT data

4 Large c limits
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Global limit

Reproduce global results with c →∞ and hi fixed

⇒ α = bh + O(b3) as b → 0

Infinite number of trajectories with

hm = h1 + h2 + m + O(b2)

Checks:

1 Reproduce MFT from VMFT (exchange of identity)

2 Other t-channel reproduced

3 Next order in identity exchange gives T
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Semiclassical limit

Again c →∞ but some operators heavy h ∼ c

⇒ α = Q
2 + ib−1p or α = ηb−1 as b → 0

When m� b−1 ∼ √c , h1 = O(c) < c
24 and h2 = O(1),

recover

hm ≈ h1 +

√
1− 24h1

c
(h2 + m)

same as FKW

When further take h1
c � 1, recover

hm ≈ h1 + h2 −
12h1h2

c

which can be derived from inversion formula
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Summary

1 Fusion kernel: write t-channel Virasoro block in terms of
s-channel blocks

2 VMFT: inversion of identity Virasoro block

3 Quantum Regge Trajectories

4 Corrections to trajectories

5 Large c limits
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Other results

Many other applications

1 Virasoro blocks at late time (information paradox)

2 Gravity interpretation

3 z → 1 limit of Virasoro blocks

4 HHLL Virasoro blocks

5 2d lightcone bootstrap
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