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Abstract In this paper we consider an anisotropic scaling approach to understanding
rock density and surface gravity which naturally accounts for wide range variability
and anomalies at all scales. This approach is empirically justified by the growing
body of evidence that geophysical fields including topography and density are scal-
ing over wide range ranges. Theoretically it is justified, since scale invariance is a
(geo)dynamical symmetry principle which is expected to hold in the absence of sym-
metry breaking mechanisms. Unfortunately, to date most scaling approaches have
been self-similar, i.e., they have assumed not only scale invariant but also isotropic
dynamics. In contrast, most nonscaling approaches recognize the anisotropy (e.g., the
strata), but implicitly assume that the latter is independent of scale. In this paper, we
argue that the dynamics are scaling but highly anisotropic, i.e., with scale dependent
differential anisotropy.

By using empirical density statistics in the crust and a statistical theory of high
Prandtl number convection in the mantle, we argue that P(K,kz) ≈ (|K/ks |Hz +
|kz/ks |)−s/Hz is a reasonable model for the 3-D spectrum (K is the horizontal
wavevector and K is its modulus, kz is a vertical wavenumber), (s,Hz) are funda-
mental exponents which we estimate as (5.3,3), (3,3) in the crust and mantle, re-
spectively. We theoretically derive expressions for the corresponding surface gravity
spectrum. For scales smaller than ≈100 km, the anisotropic crust model of the den-
sity (with flat top and bottom) using empirically determined vertical and horizontal
density spectra is sufficient to explain the (Bouguer) gz spectra. However, the crust
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thickness is highly variable and the crust-mantle density contrast is very large. By
considering isostatic equilibrium, and using global gravity and topography data, we
show that this thickness variability is the dominant contribution to the surface gz spec-
trum over the range ≈100–1000 km. Using estimates of mantle properties (viscosity,
thermal conductivity, thermal expansion coefficient, etc.), we show that the mantle
contribution to the mean spectrum is strongest at ≈1000 km and is comparable to the
variable crust thickness contribution. Overall, we produce a model which is compati-
ble with both the observed (horizontal and vertical) density heterogeneity and surface
gravity anomaly statistics over a range of meters to several thousand kilometers.

Keywords Geogravity · Geopotential theory · Fractals · Multifractals · Scaling

1 Introduction

1.1 Gravity as a Probe of the Earth’s Interior: Gravity Anomalies and Depths to
Sources

The Earth’s gravity field is highly variable over a very wide range of spatial scales.
There are two approaches which have been used to understand this. The most com-
mon has been to seek one to one (deterministic) relations between the fluctuations in
surface gravity at a given scale and density anomalies at corresponding depths. In lo-
cal or regional studies, this idea is commonly used to infer the depth to the source of
gravity anomalies from the spectral peaks of surface gravity (e.g., Bullard and Cooper
1948; Spector and Grant 1970; Maus and Dimri 1996); the methods of wavelet analy-
sis represent the most recent development in this type of application (e.g., Fedi et al.
2005). The second (neglected) approach has aimed at understanding and explain-
ing the overall scale dependence of the statistics and the relations between the rock
density and surface gravity statistics. Both approaches exploit a basic result of po-
tential theory which shows that the contribution to the surface gravity at horizontal
wavenumber K decays exponentially with the depth of the layer.

Globally, the deterministic approach has attempted to interpret the separation
of the density heterogeneities from different rheological layers—the lithosphere,
asthenosphere, lower mantle, and core in order to understand the relationship be-
tween geodynamic processes and planetary gravity fields (see Bowin 2000 for a re-
cent review). Figure 1 shows the Earth geoid up to 360th order (the EGM96 model,
Lemoine et al. 1998), indeed it is plausible that the breaks at scales corresponding to
≈3000 km and to ≈100–200 km can be associated with the depths of core-mantle
and mantle-crust boundaries. That the break at 100–200 km is indeed the reflection
of the crust-mantle boundary with the mechanism of isostatic compensation can be
confirmed by the comparison of the gravity and topography power spectra (Fig. 1).
For uncompensated topography, the two spectra must be parallel (as they appear to
be at high wave numbers). If the topography is completely compensated, the low
wavenumber gravity power spectrum will be attenuated depending on the depth of
compensation. The exact wavenumber where the break occurs depends on the flexural
rigidity. The topography for wavenumbers <(200 km)−1 (see Sect. 3.5) is apparently
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Fig. 1 Comparison of the surface gravity spectrum (bottom, shifted vertically for ease of comparison)
with the ETOPO5 topography spectrum (middle) and continental US (top, two strips, each 512 × 65526
pixels long, each pixel, 90 m, also shifted vertically for clarity). The red reference line has slope −2.1.
Wave number units: km−1. Black, lower left shows the (isotropic) (spherical harmonic) global surface
gravity spectrum calculated from the data discussed in Lemoine et al. (1998). The modes 1, 2 have been
excluded, since they go far off-scale. The extreme high frequency (k = 360) corresponds to ≈100 km

fully compensated, whereas for wavenumbers >(100 km)−1–(200 km)−1 it is not.
The actual break varies locally depending on flexural rigidity. Finally, the break at
≈3000 km in Fig. 1 could be a manifestation of the mantle core discontinuity. A final
note before continuing: we use the terms “crust” and “mantle” somewhat loosely; we
recognize that in many cases the terms “lithosphere” and “asthenosphere” might be
more technically exact.

1.2 Geophysical Scaling and Surface Gravity

The deterministic approaches have been most successful in determining characteris-
tic scales—either of rheological transitions, or of the depths of anomalies. They give
no information about—nor understanding of—the statistics as functions of scale be-
tween the break points, nor information about the statistics of strong anomalies at
fixed scales. In order to understand the observed wide range variability, some scaling
(scale invariant) type assumptions are virtually mandatory since otherwise a (largely
ad hoc) hierarchy of individual (nonscaling) sources of variability would have to be
invoked every factor of 2 or 3 in scale. Indeed, there have been scaling models in
solid earth geophysics ever since Vennig-Meinesz (1951) suggested that the energy1

1This is the (horizontal) angle integrated spectrum not the angle averaged spectrum; see discussion below.
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at horizontal wave number K in the topography spectrum follows

E(K) ≈ K−βtop (1.1)

with βtop = 2. Figure 1 shows that even with modern data Venning-Meinesz’s spec-
trum is still an excellent approximation even down to scale below 1 km (although
βtop ≈ 2.1, see Gagnon et al. 2003, 2006). If we perform isotropic scale reductions
by a factor λ such that horizontal vectors are transformed as X → λ−1X, then the
corresponding wave vectors are transformed as K → λK; we see that the power law
form of E(K) is conserved (it is “scaling”); the exponent β is “scale invariant”. Spec-
tra of this form are therefore expected if the underlying dynamical processes are also
symmetric with respect to isotropic scaling transformations (systems symmetric with
respect to such isotropic scaling transformations are called “self-similar”).

The implications of the scaling of the topography for the gravity field have also
been considered for some time. Kaula (1963) noted that the spectrum of the Earth’s
geoid follows a power law of the type (1.1) but with βgeoid ≈ 3. Since βgeoid = βg +2,
and over the range 200–3000 km Fig. 1 shows a flat gravity spectrum (βg ≈ 0), a value
βgeoid ≈ 2 is more realistic. Kaula already noted that the power spectrum of the grav-
ity potential due to uncompensated surface topography should have βgeoid = 4, cor-
responding to a much more rapid decay than that observed. The discrepancy reflects
the fact that the surface topography is by and large isostatically compensated.

Although studies of the scaling properties of rock density do not cover the same
range of scales as those of gravity or topography, they have also tended to support the
idea that various rock properties are scaling over wide ranges. For example, several
recent (1-D) studies (Leary 1997; Pilkington and Todoeschuck 1993; Shiomi et al.
1997; Marsan and Bean 1999) have shown the rock density in boreholes to be scal-
ing over the range ≈2 m to ≈1 km. The discovery of such empirical scalings have
encouraged Maus and Dimri (1995, 1996), Maus (1999) to explore the consequences
for the surface gravity implied by assuming self-similar (isotropic, unstratified) scal-
ing rock density fields; their basic result is βg = βρ + 2, where βρ is the exponent of
the 3-D isotropic rock density spectrum.

1.3 Anisotropic Scaling, Geomagnetism, Geogravity

The assumption of isotropic rock density statistics is quite unrealistic if only because
it contradicts the obvious fact of geological stratification. This anisotropy has been
noted and quantified for the magnetic susceptibility by Pilkington and Todoeschuck
(1995), and—more extensively—for various different physical properties (including
density) by Leary (1997, 2003) who compared the spectra of horizontal and vertical
boreholes. These authors (and recently Tchiguirinskaia (2002) for hydraulic conduc-
tivity in both the vertical and horizontal) made the important point that the scaling is
obeyed in both horizontal and vertical directions, but with different exponents in the
different directions. In Lovejoy and Schertzer (2007), we review these and other scal-
ing properties of intensive quantities such as rock density, magnetic susceptibility,
etc.

If the statistics in the horizontal and vertical directions are both scaling but dif-
ferent, then the overall system will be symmetric with respect to a scale change
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more general than isotropic reductions. The general formalism for handling scaling
transformations is Generalized Scale Invariance (GSI; Schertzer and Lovejoy 1985a,
1985b). GSI shows that scale invariance is a (nonclassical) dynamical symmetry prin-
ciple; as usual with symmetries, they are expected to hold in the absence of symmetry
breaking mechanisms. A generic consequence of wide range GSI scaling is the ex-
istence of fractal structures with multifractal statistics; these features have now been
reported in many areas of geophysics including the topography analyzed in Fig. 1
(Gagnon et al. 2003, 2006), and scaling has been proposed as a unifying paradigm
for geodynamics (Schertzer and Lovejoy 1991; Lovejoy and Schertzer 1998). These
papers also argued that the development of scaling models in geophysics has been
held back because of the all too frequent reduction of scaling to the isotropic special
case of self-similarity.

In a pair of papers (Lovejoy et al. 2001; Pecknold et al. 2001), we explicitly pro-
posed that the Earth’s magnetization (M) respects such an anisotropic scaling sym-
metry. Using potential theory and with the help of multifractal simulations of M and
the associated surface magnetic field (B), we explored the consequences for the B

field anomalies and the relationships between the M and B statistics. We have not
only been able to reconcile stratified, anisotropic M scaling with the surface B scal-
ing, but we have also showed that the anisotropy leads to a qualitatively new scaling
regime which could explain the intermediate scale (100–2000 km scale) surface B

statistics.
Our aim in this paper is to extend these results to gravity which—also being a

potential field—has several similarities. For example, as with magnetism, an impor-
tant success of anisotropic scaling models is evident at scales smaller than that of the
crust thickness. This is because the isotropic (self-similar) relation between gravity
and rock density spectral scaling exponents (βg = βρ +2) is untenable, since regional
Bouguer gravity surveys have βg ≈ 5 (see Sect. 3.2.2) whereas empirically, βρ ≈ 1
(see Sect. 3.2.1). However, since we show theoretically that2 βg = βρ + 1 + Hz and
the rock spectra indicate the anisotropy exponent Hz ≈ 3, we will see that the small
scale gravity exponent is correctly predicted by the theory and the rock density expo-
nents.

Beyond these regional scales, the magnetism and gravity problems have important
differences. For example, below the Curie depth (which is above the crust-mantle
boundary), the magnetization vanishes whereas on the contrary, the corresponding
gravity field has a source in the convective mantle. Although our information on the
mantle density fluctuations is quite limited and indirect, a recent anisotropic scal-
ing theory of high Prandtl number convection (Sect. 3.3) predicts that over the range
from ≈20 to ≈3000 km the density should indeed respect anisotropic scaling (also
with Hz = 3); we calculate the corresponding surface gravity statistics and compare
them to the global gravity spectra. An additional difference between magnetism and
gravity is that M does not appear to have a sharp discontinuity at the Curie depth so
that the horizontal variation in the cut-off depth does not seem to generate a strong
surface B anomaly. On the contrary, the density contrast at the crust-mantle bound-
ary is large and is best modeled as a discontinuity across a (multi) fractal surface.

2This formula is valid if βρ is the horizontal density exponent and Hz > 1; see Sect. 3.
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We do not consider scales larger than ≈3000 km, so that we ignore core and possible
core-mantle boundary contributions. Although several of the present calculations are
similar to those in the magnetism problem, by making a small change in our scale
function ansatz, we are able to obtain many exact results and therefore can make
precise comparisons between the gravity theoretically predicted from the density ob-
servations/models, and both global and regional surface gravity surveys. Although a
full statistical characterization of the fields requires statistics of all orders for rela-
tive simplicity, we here limit ourselves to spectra (which are 2nd order). While for
quasi Gaussian (e.g. monofractal) models these spectral results fully characterize the
statistics, for multifractal models they only give a partial characterization.

This paper is structured as follows. In Sect. 2, we review the basic theory on
anisotropic scaling and relevant results of potential theory and derive the connections
between the second order rock density and surface gravity statistics (in both real and
Fourier space). In Sect. 3, we apply the results to the crust and develop a scaling
model of mantle convection as well as apply the result to the mantle and estimate the
contribution to surface gravity of a scaling mantle-crust interface/topography model.
In Sect. 4 we conclude.

2 Symmetries and the Relation between the Density and Gravity Fields

2.1 The Standard Density–Gravity Relations

In order to show how anisotropic scaling of the rock density field (ρ(r)) can lead to
a scale break in the surface gravity (gz) or gravitational potential (φ), first recall the
solution of the Poisson equation

g = −∇φ; φ(r) = G

∫
ρ(r ′)

1
|r − r ′| dr ′, (2.1)

where G is the universal gravitational constant. The convolution in the above can
be regarded as a fractional integration of order 1; hence, if the problem (including
the surface boundary conditions) were isotropic, the relative orders of singularity of
the two fields (ρ,φ) would be simply shifted by one, leading to simple relations be-
tween the multifractal statistics of the two fields. However, the boundary conditions
are clearly not isotropic, the classical assumption being that the rock is distributed
over a half-volume bounded at z = 0. This amounts to ignoring the topography3 and
sphericity of the Earth. With this half-volume boundary condition, we obtain (e.g.,
Naidu 1968; Blakely 1995) the following particularly simple expression for the hori-
zontal Fourier transform of the surface gravity

g̃z(K) = 2πG

∫ ∞

0
ρ̃(K, z)e−zK dz; z ≥ 0, (2.2)

3Or, assuming that its effects can be removed/“corrected”.
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the horizontal wavevector is K = (kx, ky), K2 = |K|2 = k2
x + k2

y , and ρ̃(K, z) is the
horizontal Fourier transform of the density at depth z. We use the following conven-
tion for the D-dimensional Fourier transform pair f̃ (k), f (x)

f̃ (k) =
∫ ∞

−∞
f̃ (x)e−k·x dDx; f (x) = 1

(2π)D

∫ ∞

−∞
f (x)eik·x dDk, (2.3)

and also the convention that z > 0 downward. Equation (2.2) shows that the con-
tributions of deep layers are exponentially attenuated. Defining the three-vector
k = (K, kz), a more convenient equivalent expression is obtained in terms of the 3-D
Fourier transforms ρ̃(K, kz)

g̃z(K) = 2πG

∫ ∞

−∞
ρ̃(K, kz)

dkz

−K + ikz
. (2.4)

If we now assume statistical translational invariance, then the various Fourier modes
are statistically independent (2.6) and the horizontal spectral density is easily ob-
tained by multiplying the above by the complex conjugate and ensemble averaging

Pg(K) = 2(2πG)2
∫ ∞

0

Pρ(K, kz) dkz

(K2 + k2
z )

(2.5)

(the additional factor of 2 comes from the contributions for kz < 0), and Pρ , Pγ are
the spectral densities of ρ, gz

〈
ρ̃(k)ρ̃(k′)

〉
= Pρ(k)δ(k + k′);

〈
g̃z(k)g̃z(k

′)
〉
= Pg(k)δ(k + k′). (2.6)

Note that here and below, the symbol “〈 〉” denotes ensemble (statistical) averaging.
We have used the symmetry f̃ (k) = f̃ ∗(−k) (complex conjugate) valid when f (x)

is real.
If we now assume horizontal statistical isotropy, then the horizontal spectral den-

sity is a function only of K , and we define the isotropic energy spectrum (E(K))
by

E(K) = 2πKPg(K); K = |K|. (2.7)

The isotropic spectrum E is usually used in the turbulence literature; in isotropic sys-
tems it has the advantage that (contrary to P ) it is independent of the space dimension
(e.g., 1-D cross-sections will have the same E as for the full three-dimensional sys-
tem; this is not true for P ).

2.2 Anisotropic Scaling

Up until the 1980s, scaling was restricted to isotropic systems with unique fractal
dimensions. Since then two generalizations have been important for geophysical ap-
plications: first, the treatment of statistics of all orders (not only second order), that
is, multiscaling/multifractality, and second, the extension to anisotropic differentially
stratified, and/or rotating systems, i.e., Generalized Scale Invariance (GSI, Schertzer
and Lovejoy 1985a, 1985b). In the following, for simplicity we pursue the second
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order statistics. Our results will be valid for both anisotropic fractal and multifractal
rock density models, although in the latter they will only provide a rather limited
characterization of the statistics.

In order to understand GSI, it is helpful to introduce the dimensionless “scale
function” ‖(X, z)‖ which is the physically relevant notion of scale. The scale function
satisfies the functional scale equation

∥∥Tλ(X, z)
∥∥ = λ−1∥∥(X, z)

∥∥, (2.8)

where Tλ is the scale changing operator

Tλ = λ−G (2.9)

and G is the generator. The scale function is analogous to a norm, but need not respect
the triangle inequality.4

In the special case where the statistics of the anisotropy independent of location
(but not of scale), G is a matrix (linear GSI) and there exist conjugate Fourier space
scale functions which satisfy

∥∥T T
λ (K, z)

∥∥ = λ
∥∥(K, z)

∥∥, (2.10)

where the “T ” indicates the transpose (note the scale function in (2.10) is not gener-
ally the same as the real space counterpart which satisfies (2.8)).

If we have pure (scaling) stratification in the z direction, we may take the generator
to be diagonal (this leads to self-affine statistics)

G = GT =
(1 0 0

0 1 0
0 0 Hz

)

(2.11)

(the first two rows/columns refer to kx , ky , the last to kz), and an anisotropic spectral
density may be written

Pρ(K, kz) = P0
∥∥(K, kz)

∥∥−s
, (2.12)

where s is the spectral density exponent and P0 is a constant determining the ampli-
tude of the spectrum; if ρ is in Kg m−3, then P0 is in Kg2 m−3. A convenient, but not
unique, choice of ‖(K, kz)‖ is

∥∥(K, kz)
∥∥ =

((
K

ks

)Hz

+ kz

ks

)1/Hz

, (2.13)

where we have introduced a “sphero-wave number” ks at corresponding sphero-
scale ls = 2π/ks (note that K,ks, kz > 0). At this scale, Pρ(ks,0,0) = Pρ(0, ks,0) =
Pρ(0,0, ks), i.e., Pρ is roughly constant over a sphere; since ‖(ks,0,0)‖ =
‖(0, ks,0)‖ =‖ (0,0, ks)‖ = 1, horizontal and vertical fluctuations have the same

4It need only define a series of decreasing balls, i.e., if Bλ = TλB1 then λ′ > λ ⇒ Bλ ⊂ Bλ′ .
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variance. Indeed, here and in the following, any scale function satisfying linear GSI
(i.e., including those in which G has off-diagonal elements, as long as its eigenvalues
are real5) will give essentially the same qualitative results (including for the gravity
spectrum) as those discussed here.

Using the sphero-scale as a reference scale, dimensional analysis gives

P0 = Cρ2
s l3

s = Cρ2
s (2π)3k−3

s , (2.14)

where ρ2
s is the density variance at the sphero-scale and C is a dimensionless constant

which depends on the exact definition of ρs and of the unit ball.

2.3 Second Order Horizontal and Vertical Density Statistics. The Crust

The above choice of Pρ (2.15), (2.16) determines the second order horizontal and
vertical density statistics. The horizontal spectrum is

Eρ(K) = 2πK

∫ ∞

0
Pρ(K, kz) dkz = Aρxρ

2
s k−1

s

(
K

ks

)−βx

;

βx = (s − Hz − 1); (if s > Hz) (2.15)

(if s < Hz, then there is a high wavenumber divergence; if we prevent the divergence
by using a finite high frequency cut-off, then βx = −1). Here and below, the dimen-
sionless constants will be denoted by A (spectral), B (real space), C (other) and can,
when necessary, be found by comparing the exact results in Tables 1, 2 with the corre-
sponding formulae in the text (see Appendices A, B, respectively). The corresponding
vertical spectrum is

Eρ(kz) = 2π
∫ ∞

0
Pρ(K, kz)K dK = Aρzρ

2
s k−1

s

(
kz

ks

)−βz

;

βz = (s − 2)/Hz; (s > 2) (2.16)

(if s < 2, then there is a high wave number divergence; using a finite high frequency
cut-off, we obtain βz = 0).

Although ks is the sphero-wave number as defined by the spectrum Pρ , we note
that

Eρ(kz = ks)

Eρ(K = ks)
=

(( 2
Hz

)(( s−2
Hz

)(s − Hz)

2H 2
z (( s

Hz
)

, (2.17)

which is not exactly unity (for the empirical crust exponents, s = 5.3, Hz = 3, we
obtain a ratio of 0.18; ( is the usual gamma function). This fact points to the inher-
ent inaccuracy of estimates of the sphero-scale obtained from 1-D spectra E (rather
than from the spectral density P ). We also note that here the elliptical dimension

5The case of complex eigenvalues involves an infinite number of rotations of structures as the scale is
varied from 0 to ∞; it is probably not relevant to the vertical stratification problem. See Pecknold et al.
(2001) for applications in surface magnetic anomaly mapping.
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characterizing the rate of increase in volumes of typical structures6 is del = 2 + Hz.
When Hz = 1, we obtain the isotropic value del = 3, with the corresponding isotropic
relation between exponents: βz = βx = s − 2.

It will also be convenient to express the statistics in real space via the correlation
function (R) and structure functions (S). For statistically horizontally homogeneous
systems these are defined by

R()x) =
〈
f (x)f (x +)x)

〉
,

S()x) =
〈(
f (x) − f (x +)x)

)2〉 = 2
(
R(0) − R()x)

)
.

(2.18)

From the Wiener–Khintchin theorem we have

R()x) = 1
(2π)D

∫ ∞

−∞
P(k)eik·)x dDk;

S()x) = 2
(2π)D

∫ ∞

−∞
P(k)

(
1 − eik·)x

)
dDk.

(2.19)

For the models discussed here, which are anisotropic in the vertical plane but isotropic
in the horizontal, we have

R(0,0,)z) = 1
π

∫ ∞

0
Cos(kz)z)E(kz) dkz;

S(0,0,)z) = 2
π

∫ ∞

0

(
1 − Cos(kz)z)

)
E(kz) dkz,

(2.20a)

R()X,0) = 1
(2π)2

∫ ∞

0
E(K)J0(K)X)dK;

S()X,0) = 2
∫ ∞

0

(
1 − J0(K)X)

)
E(K)dK,

(2.20b)

where )X = ()x,)y) is a horizontal vector; )X = |)X| is the 2-D modulus and
J0 is the 0th order Bessel function.

Equations (2.15) and (2.16) have been derived by assuming that the scaling of P
is respected for all K , kz; see Appendix A for the effect of finite cut-offs (necessary,
in particular, to account for the finite crust thickness). The constants Aρx , Aρz have
been chosen so that ρ2

s is the (horizontal) sphero-scale density fluctuation variance
(structure function)

Sρ()X,0) = ρ2
s

(
)X

ls

)βx−1

; s > Hz,

Sρ(0,0,)z) = Bρzρ
2
s

(
)z

ls

)βz−1

; s > Hz + 2,

(2.21)

6This type of spectrum was first proposed in the atmosphere Schertzer and Lovejoy (1985a) where the
values βx ≈ 5/3, βz ≈ 11/5 (hence, del = 23/9 = 2.555 . . .) were derived from dimensional analysis and
confirmed by observation.
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i.e., by definition of ρs , Sρ(ls ,0,0) = ρ2
s . Note that rather than defining the sphero-

scale via the Fourier space ks using ls = 2π/ks , one could define the sphero-scale in
real space (lrs) using, for example, Sρ(lrs,0,0) = Sρ(0, lrs,0) = Sρ(0,0, lrs). Since
Bρz is of order unity, the difference will generally not be large. However, if the β’s
are close enough to one (as is apparently the case in the crust), the difference can
be large, see Appendix A. Here and throughout, we use the Fourier space definition
ls = 2π/ks .

2.4 Second Order Horizontal and Vertical Density Statistics. The Mantle

The mantle model is discussed in Sect. 3.3, the spectrum is of the same general form
as that discussed for the crust; hence, it is appropriate to discuss the corresponding
gravity formulae here. Although the mantle and the crust formulae share the same
basic anisotropic scaling form, there are nevertheless significant differences. For ex-
ample, for the mantle s = Hz(= 3), whereas for the crust s > Hz. This is significant,
since when s = Hz there must be a high wavenumber cut-off at the sphero-scale to
assure convergence of the horizontal spectra, i.e., formula (2.15) is only valid for
K , kz < ks . Physically, the convection model upon which the density scaling law is
based breaks down for these scales, the corresponding Peclet number is less than one,
convection becomes ineffective. The necessity of a large wavenumber cut-off poses
a technical problem: What is the most realistic/and or mathematically tractable cut-
off? A related problem is the definition of the sphero-scale fluctuation variance ρ2

s .
The model choices made in dealing with these issues are considered in Appendix B;
they will alter the constants in the following by a factor of order unity (comparison
of various models indicates that the factors may be as large as 4).

In the special case s = Hz, we have

Eρ(K) ≈ Aρxρ
2
s k−2

s K log
(

ks

K

)Hz

, k / ks, (2.22a)

Eρ(kz) ≈ Aρzρ
2
s k−1

s

(
kz

ks

)2/Hz−1

, kz / ks. (2.22b)

Similarly, in real space

Rρ()X,0) ≈ Bρxρ
2
s

(
ls

)X

)2

, )x 0 ls , (2.23a)

Rρ(0,0,)z) ≈ Bρzρ
2
s

(
ls

)z

)2/Hz

, )z 0 ls (2.23b)

(for the mantle, put Hz = 3 in the above). The correlation (rather than structure)
function is used, since the corresponding spectrum is an increasing function of hori-
zontal wave number up to the cut-off so that R rather than S is a pure power law (see
(2.19) for the relation between them). Following the discussion in Appendix B, the
optimum choice is the exponential cut-off model with the definition of ρs such that
Rρ(0,0,0) = ρ2

s ; these choices were used in determining the theoretical constants in
Table 2.
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2.5 Symmetries, Symmetry Breaking, and the Gravity Statistics

We have seen that the gravitational potential φ is the convolution denoted “∗” of
density ρ with the Green’s function |r|−1

φ ∝ ρ ∗ 1
|r| (2.24)

(2.1); however, the Green’s function is symmetric with respect to scale changes with
isotropic generator G = 1

1
|λ−Gr| = λ

1
|r| ; G =

(1 0 0
0 1 0
0 0 1

)

. (2.25)

The result is that φ has broken symmetry. A direct calculation of the horizontal spec-
trum of the vertical component of gravity (with low frequency cut-off; kc) gives

Eg(K) = 2(2π)3G2K

∫ ∞

0

Pρ(K, kz) dkz

|(K, kz)|2
= 2(2π)3G2K

∫ ∞

0

dkz

|(K, kz)|2‖(K, kz)‖s

= 2(2π)3G2K

∫ ∞

0

dkz

(K2 + k2
z )[(K/ks)Hz + (kz/ks)]s/Hz

. (2.26)

We now consider in turn the two cases s 2= Hz, s = Hz.

(i) s > Hz. For the crust (s > Hz, no high frequency cut-off) this yields

Eg(K) = Agchρ
2
s k−3

s G2
(

K

ks

)−βh

, K 0 ks,

Eg(K) = Agclρ
2
s k−3

s G2
(

K

ks

)−βl

, K / ks,

(2.27)

i.e., there are two distinct regimes with high and low wavenumber exponents βh,
βl given by

βl = s + 1 − Hz, s > Hz,

βl = s/Hz, Hz > s > 1,

βh = s, Hz > 1.
(2.28a)

This result shows that the incompatibility of the anisotropic scaling of the density
with the isotropic scaling of the gravitational Green’s function produces a break
at the sphero-scale.

The corresponding formulae for Hz < 1 are

βl = s − 2,

βh = s − 3 + Hz, s > Hz,

βh = 2/Hz − 2, s < Hz,
(2.28b)

From (2.28a, 2.28b) we see that if s > Hz then, for any Hz, βh − βl = Hz − 1.
However, we shall see that the empirical rock density spectra constrain s > 1 and
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from Fig. 1 we see that all of the transitions have βh −βl > 1; so that anisotropic
scaling with Hz < 1 cannot explain them. In addition, we will see that the em-
pirical evidence is fairly clear that βx > βz for various rock properties including
density, implying Hz > 1 (see also the survey Lovejoy and Schertzer (2007). Fi-
nal evidence that Hz > 1 is that βh ≈ 5, so that Hz < 1 would imply (2.28b) that
s ≈ 8, βx,βz > 6 which are much too large. In what follows, we shall concentrate
on the parameter range Hz > 1 (in particular, the values s = 5.3, Hz = 3 give a
reasonable fit to the high wavenumber rock and gravity spectra). Note that for
s > Hz > 1, we have βl = βρx +2 which provides a strong constraint on models,
since the mantle regime ((≈3000 km)−1 < k < (≈200 km)−1), has βg ≈ 0, and
βρx ≈ 1. This rules out a simple linear GSI model for the crust/mantle transition.
Finally, when Hz = 1 (isotropy), we recover the standard result βl = βh = s =
βρx + 2 = βρz + 2.

(ii) Hz = s. For the mantle (s = Hz = 3), we obtain

Eg(K) ≈ Agmx,l
G2ρ2

s

k2
s K

log
(

ks

K

)
; K / ks, (2.29a)

Eg(K) = Agmx,hG
2ksρ

2
s K−4; K 0 ks. (2.29b)

Note that this formula ignores the downward continuation factor e−2Kzc neces-
sary to take into account the fact that the mantle is at a depth zc below the crust.
The corresponding real space results are given in Table 2 and in Appendix B.

It is also of interest to calculate the corresponding formulae for the geoid. The
relation of the geoid and gravity spectra is

Egeoid(K) = Eg(K)

g2
zK

2 . (2.30)

Corresponding formulae are given in Tables 1, 2 and Appendices A, B.
We have already noted that breaks in the gravity spectra introduced by the

anisotropy of the rock density scaling cannot by themselves explain the shape of
the gravity spectrum (Fig. 1) if only because the latter has two breaks. Since the
effect of low wave number cut-off is not trivial, and an understanding is helpful
in evaluating this and other (more realistic) models discussed in Sect. 3, we give
details of the effect of a cut-off in Appendix A.

3 Scaling Models of the Density of the Crust, Mantle, Topography, and
Interface

3.1 Discussion

In modeling the density of the crust-mantle system, we will need hypotheses about
the topography, the crust-mantle spatial correlations and the nature of their interface;
the latter being important because of the large (typically, ≈400 Kg m−3) crust-mantle
density contrast. Because of isostatic equilibrium, the crust-mantle interface and the
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topography contributions are intimately connected; (see Sect. 3.4). The spatial corre-
lations between the crust and the mantle are most simply dealt with by considering
them to be statistically independent systems. Physically, the most unrealistic conse-
quence of this neglect of mantle “roots” of crustal structures is that it implies a strong
statistical discontinuity in structure at the interface; however, since the interface will
be treated as a (statistically independent) fractal discontinuity surface, this lack of
statistical crust-mantle continuity may be less significant.

This model leads to the following equation (c.f. (2.2)) for the surface Fourier trans-
form

g̃z(K) =
∫ zc

0
ρ̃c(K, z)e−zK dz + e−zcK

∫ zm−zc

0
ρ̃m(K,z)e−zK dz, z ≥ 0, (3.1)

where crust and mantle parts are indicated with indices “c”, “m”, the crustal region
is down to depth zc , and the mantle between zc and zm. With the assumption of
statistical independence of the crust and mantle (but also of Fourier components,
(2.6)), we obtain

Pg(K) =
〈
|gz|2

〉
≈

∫ ∞

kc

[Pc(K,kz) + e−2KzcPm(K,kz)]
K2 + k2

z

dkz

+ e−2Kzc

∫ kc

km

Pm(K,kz)

K2 + k2
z

dkz, (3.2)

where the factor e−Kzc takes into account the fact that the mantle layer starts at a
depth zc , not at z = 0 and where we have more convenient step-function Fourier
space cut-offs: kc ≈ 1/|zc|, km ≈ 1/|zm − zc| ≈ 1/|zm| (i.e., take zm 0 zc). Equation
(3.2) shows how the crust and mantle contributions to the surface gravity may be
combined.

3.2 The Crust

3.2.1 Empirical Estimates of Model Parameters

Unfortunately, very few data exist on spectral exponents for the rock density. Leary
(1997) has probably the most extensive analyses with both horizontal and verti-
cal spectra from similar regions. Due to strong (presumably multifractal) intermit-
tency/variability (see Marsan and Bean 1999; Pecknold et al. 2001) individual bore-
holes have a fair amount of spectral variability (recall that the spectrum is an en-
semble averaged quantity; the scaling is almost surely violated on every individual
realization).

Before proceeding, it is useful to invert the relations (2.15)–(2.16) to obtain

Hz = (βx − 1)

(βz − 1)
, (3.3)

which is a convenient formula for estimating Hz from spectra.
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The difficulty in estimating Hz (and the sphero-scale) is that Leary’s results give
roughly βz ≈ 1, βx ≈ 1; his precise analysis of 45 spectra (30 vertical, 15 horizon-
tal) yields βz ≈ 1.1 ± 0.12, βx ≈ 1.34 ± 0.12, yielding Hz ≈ 3 (the nearest integer).
A comparable value (Hz ≈ 2–3) was obtained for the magnetization (M) (Lovejoy
et al. 2001; Pecknold et al. 2001); in obvious notation, if HzM = Hzρ and sM = sρ ,
then a statistical version of Poisson’s relation may hold.7 The spectrum from the
much longer KTB borehole yields: βz ≈ 1.2 Lovejoy and Schertzer (2007); similarly,
Shiomi et al. (1997) obtains βz ≈ 1.1–1.3 for sedimentary, βz ≈ 1.3–1.6 for volcanic
rock. Finally, we should note that Leary also gives nearly identical values for the ex-
ponents for gamma decay and sound velocity; this supports the idea that the value
of Hz (and hence del) may be the same for different physical properties and hence
supports the notion that it may be a fundamental characteristic of the geological strat-
ification.

The poor estimates of Hz (due to their small horizontal/vertical difference) lead
to great uncertainty in estimating the sphero-scale. It can be roughly estimated using
Leary’s spectra (which are over the range ≈1–103 m), by extrapolating the horizon-
tal and vertical spectra to their crossing point (although he gives exponents for 45
spectra, he only shows a single horizontal and a single vertical density spectrum). For
the above exponents, this gives a crude estimate of the sphero-scale to be8 ≈100 km,
but this value is very sensitive to the exact values of βx , βz. In order to improve
the reliability of this estimate and to use Shiomi’s (vertical only) density spectra,
we first graphically estimated the prefactors in the formulae Eρ(kz) ≈ E0zk

−1.1
z ,

Eρ(K) ≈ E0xK
−1.3; these are shown in the table below where the units are rad m−1

for k, Kg2 m−5 for E (Shiomi obtained an exponent of 1.27, but this is not too dif-
ferent from the 1.1 value from Leary). Shiomi normalized his densities by an un-
known mean; from the graph of his borehole data, we estimated a mean density of
ρ0 = 2.5 × 103 Kg m−3, and used his graph to estimate the E0ρz in Table 3.

The second step in obtaining a reliable estimate of ρs , ks , was to use the DNAG
Bouguer gravity data (Fig. 2). These anomalies were from 8 continental regions
in North America; the compilations were made for the Decade of North Ameri-
can Geology (DNAG); resolution ≈5 km, 1024 × 1024 pixels. We note that the
high wave number regime, down to 10−4 rad m−1 or so, is fairly linear on a log-
log plot with slope s ≈ 5.3 as predicted by the high frequency gravity (approxi-
mately given by Eg(K) = Chρ

2
s k−3

s G2(K
ks

)−s ). In this power law regime, we esti-
mate Eg(K) ≈ E0gK

−5.3 with E0g = 3.0 × 10−25. Using this high wave number
gravity formula, this leads to ρ2

s k2.3
s = 2.0 × 10−7 which can then be used as a con-

straint in the density spectrum (which also depends on ks , ρs , see (2.15), (2.16)).
Unfortunately, due to the low wavenumber cut-off, these theoretical formulae are

7Poisson’s relation is between magnetic and pseudo-gravity potentials and should not be confused with
Poisson’s equation. More precisely, if M has a constant direction and is everywhere proportional to ρ then
both Poisson’s relation and HzM = Hzρ and sM = sρ follow. However, the latter does not necessarily
imply the former.
8For comparison for gamma emission, we obtain ≈1 m, whereas for the velocity we find ≈1 km, but
these are all quite inaccurate. In addition, for magnetic susceptibility, Lovejoy et al. (2001) estimate a
sphero-scale at ≈104–105 km.
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Table 3 A comparison of various parameters estimated for the density field using the constraint from the
DNAG gravity that Eg(K = 10−4 rad m−1) = 5 × 10−4 m3 (and crust thickness = 80 km, but the result
is not too sensitive to this, see Fig. 2)

E0
b ks (rad m−1) ls (km) ρs (Kg m−3) ρs ls (Kg m−2)

Shiomi et al. (1997)a (vertical) 1.17 × 104 10−4.5 250 233 5.8 × 107

Leary (1997) (vertical) 1.92 × 104 10−4.7 310 300 9.5 × 107

Leary (horizontal) 2.3 × 103 10−4.3 125 113 1.4 × 107

Overall 10−4.5 250 215 5.4 × 107

aFor the Shiomi relative density fluctuations, we assumed a mean density ρ0 = 2.5 × 103 Kg m−3

bThese values assume E = E0k−β with β = βx = 1.3 (horizontal), β = βz = 1.1 (vertical), and units of k

in rad m−1, units of E in Kg2 m−5

Fig. 2 A comparison of the crust model thickness 10, 20, 40, 80, 160 km with the DNAG spec-
trum (from North American continental Bouguer data over an area ≈5000 km across). The parameters
ρs = 215 Kg m−3, ls = 250 km have been adjust to fit the function at K = 10−4 rad m−1, 80 km thick,
and the Shiomi and Leary borehole density data as above. The latter curve agrees well with the gravity
data up to log10 K ≈ −4.5, i.e., up to about 200 km. The model low wave number slope is +1, the high
wave number slope −s = −βh = −s = −5.3 (the intermediate wave number regime discussed in the text
is not visible since kc > ks )

not too precise. However, numerics (assuming the crust thickness in the range 40–
160 km, see Fig. 2 for the limited dependence on kc) give the solutions in Table 3
for ks , ρs the overall “best” values being ρs = 215 Kg m−3, ls = 2π/ks = 250 km,
lsρs = 5.4 × 107 Kg m−2. The fact that ks < kc (the crust cut-off) means that ρs

cannot be interpreted as the actual sphero-scale variance; it is simply a dimensional
parameter. In passing, we may note that the assumption of self-similar rock scaling
(Hz = 1) is untenable, since the DNAG estimate s ≈ 5 for the surface gravity expo-
nent would imply βx = βz = 5 − 2 = 3 which is much to steep to be compatible with
the borehole data; indeed, the difference is so large that we can probably safely rule
out the use of self-similar models in explaining the high wave number surface gravity
variability.
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3.2.2 Crust Density and Gravity Spectra, Structure Functions (<300 km)

Figure 2 shows that with these parameters the measured horizontal and vertical rock
density statistics up to scales of a kilometer can be extrapolated up to vertical scales
comparable to the crust thickness and horizontal scales of at least the order of sev-
eral hundred kilometers without contradicting the surface gravity spectra. We argue
in Sect. 3.4 that the breakdown at the larger horizontal scales is due to the large con-
tribution from the fractal crust-mantle boundary which dominates for scales >100–
300 km rather than because of a break in the horizontal scaling of the rock densities.
Indeed, since the crust contribution to surface gravity falls off at low wave numbers
with βl = −1 (see Fig. 2), the crust contribution to the spectrum rapidly becomes
smaller than the contribution from the crust-mantle interface or mantle. From the
gravity spectrum alone, we cannot rule out the possibility that the horizontal crust
density scaling continues up to planetary scales. Using these parameters, we can nu-
merically calculate the crust statistics; these are shown in Figs. 3a–d.

3.3 The Mantle

3.3.1 Theoretical Statistics Far from Boundaries

The basic starting point is the consideration of very large (most often considered
infinite) Prandtl number convection (Pr = ν/κ = viscosity/diffusivity; typical val-
ues for the mantle yield 1024). This implies that inertial terms are totally negligible
(e.g., the Reynolds number Re = vL/ν ≈ 10−19 for typical values L = 3 × 106 m,
v = 10−8 m/s, ν = 3 × 1017 m2s−1). The standard approach to mantle convection
concentrates on either a) the boundary layer where most of the temperature drop
occurs; one nondimensionalizes the equations with typical external lengths, temper-
ature gradients, etc., or b) the linearized nondimensional equations which are used
to estimate the critical Rayleigh number (Ra) for the onset of convection (the latter
is typically estimated at 1000–2000; however, the Ra for the entire Mantle is proba-
bly >106 so that chaotic behavior (as found in high resolution numerical models) is
expected.

Lovejoy et al. (2005) describe a turbulence-type approach which is expected to be
valid far from boundaries within high Prandtl number convection with quasi-constant
heat flux. The basic argument is that if we are interested in the statistics in the interior
mantle region far from boundaries, then the type of statistics should not depend on the
outer boundaries; our approach is analogous to that used to obtain the Kolmogorov
spectrum in fully developed turbulence (the latter is also expected to be insensitive
to the nature of the forcing and boundaries). The most satisfying way to derive the
Mantle convection scaling laws is to start from the basic convection equations for the
fluctuations around the conductive solutions (see, e.g., Busse 1989)

∇ · u = 0 Incompressibility, (3.4)

ν−1
(
∂u

∂t
+ u · ∇u

)
= −∇p

νρ0

+ ∇2u − gαν−1T
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Fig. 3 (a) Horizontal density
spectrum with crust thickness
2π/kc = 10, 20, 40, 80, 160 km,
ls = 2.5 × 105 m,
ρs = 215 Kg m−3. The
maximum is proportional to
(kc/ks)

(1−s/Hz); see
Appendix A. (b) Horizontal
density structure function
Sρ ()x) showing the variance of
the density fluctuations as a
function of separation distance
)x. The curves are for crust
thickness 10, 20, 40, 80,
160 km, ls = 2.5 × 105 m,
ρs = 250 Kg m−3. The
maximum is
≈(kc/ks)

(1+(2−s)/Hz), see
Appendix A: at 80 km it is about
(160 Kg m−3)2. (c) The surface
gravity structure function
corresponding to (b) for
ls = 2.5 × 105 m,
ρs = 215 Kg m−3 and
lithosphere thickness 10, 20, 40,
80, 160 km. Sg = 10−10 m2s−4

corresponds to 1 (mGal)2.
(d) The horizontal gravity
spectra corresponding to
ls = 2.5 × 105 m,
ρs = 215 Kg m−3 and
lithosphere thickness 10, 20, 40,
80, 160 km

(a)

(b)

(c)

Velocity equation (Boussinesq approx.), (3.5)

∂T

∂t
+ u · ∇T = −∇ · H

cpρ0

+ J

cpρ0

+ νzQ

κcpρ0

Temperature equation, (3.6)

H = −κρ0cp∇T + Q!z Heat diffusion equation, (3.7)
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Fig. 3 (Continued)

(d)

T , p are, respectively, the temperature and pressure differences with respect to a ref-
erence temperature and pressure (the solutions of the static equations), H is the heat
flux, J is a volume heat source. We now ignore J with respect to the heat originating
in the core, and take a typical value of (H)z = Q, the vertical heat flux imposed by
the bottom heating, top cooling. The vz term in the Temperature equation arises be-
cause of the use of fluctuating T , as does the Q!z term in the Heat diffusion equation
(Q!z is the vertical unit vector). Consider first the velocity equations (3.4), (3.5). Due
to the very low Reynold’s number we take Du/Dt ≈ 0 (“D/Dt” is the advective
derivative). In addition, as usual the role of the pressure term is simply to maintain
the incompressibility condition. Therefore, (3.5) depends only on the dimensionless
combination gα

ν .
Considering the temperature equation, various arguments show that with the as-

sumption on the imposed vertical heat flux boundary condition, that the main varia-
tions are in the z direction, i.e.,

νz
∂T

∂z
≈ 1

cpρ0

∂(H)z

∂z
. (3.8)

Integrating over a layer and using a typical value of (H)z = Q, this implies that only
the combination of variables Q

cpρ0
enters into the problem. Finally, we can note that

the heat conductivity equation only contains the dimensionless combination κcpρ0.
We thus see that the dynamics depend on the three combinations: gα

ν , Q
cpρ0

, κcpρ0;
since there are also three fundamental dimensions (temperature, distance, time), we
obtain the unique dimensional quantities:

ls ≈
(
ρ0cpνκ

2

gαQ

)1/4

,

τs ≈
(

cpρ0ν

Qgα

)1/2

,

Ts ≈
(

Q3ν

gαρ3
0 c3

pκ
2

)1/4

.

(3.9)
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From these, we may derive a characteristic density and velocity

ρs = ρ0αTs ≈
(
α3ρ0Q

3ν

gc3
pκ

2

)
,

vs = ls/τs .

(3.10)

The significance of these numbers can be seen by considering the fluctuation Peclet
number Pe = lsνs

κ for fluctuations at scale ls , velocity νs . This dimensionless group
characterizes the typical ratio of the dynamic heat transport terms to the heat diffusion
terms. Using the above dimensional quantities, we obtain

Pe = lsνs

κ
= 1, (3.11)

i.e., for scales smaller than ls , the heat transport is dominated by conduction, convec-
tion can be neglected, ls is, therefore, the inner scale of the convection regime. We
have used the subscripts “s” in anticipation of the fact that the inner scale is also a
sphero-scale (see below).

Before continuing, we can note that using standard empirical estimates for the var-
ious parameters, we obtain quite reasonable values for ls , νs , ρs . In the final column,
we give the combination ρs ls = (αρ0Qν

gcp
)1/2, since according to (2.29a) (ignoring log

corrections) this is the quantity that determines the mantle contribution to the surface
gravity: To obtain the behavior of the statistics, we must perform a more detailed
analysis of the equations. This may be done by considering the horizontal and verti-
cal extent of convective plumes. In particular, it is possible to obtain two fundamen-
tal empirical laws relating the horizontal and vertical extent of laboratory generated
plumes (C. Jaupard, private communication). If these laws are applied to an ensemble
of plumes, the following anisotropic scaling results

)T ()x) = Ts

(
)x

ls

)−1

, )T ()z) = Ts

(
)z

ls

)−1/3

,

)ν()x) = νs

(
)x

ls

)1

, )ν()z) = νs

(
)z

ls

)1/3

,

(3.12)

the density fluctuations may be obtained by multiplying the temperature equations
by αρ0. These equations justify the interpretation of ls as the sphero-scale of the con-
vection. Comparing this with (2.23), we see that s = Hz = 3. Physically, the decrease
of temperature differences for points increasingly separated points (the negative ex-
ponents) seems reasonable, since it reflects the ability of the convection to better
uniformize the temperatures over larger distances.

3.3.2 Mantle Parameters: Density, Gravity, Spectra, Structure Functions (>100 km)

We may see that (3.12) predict reasonable typical external velocities and temper-
atures. Taking the following values from Table 4, Ts = 375 K, ρs = 30 Kg m−3

and ls = 20 km, νs = 2 mm/yr, and defining λ as the scale ratio λ = L
ls

, where
L ≈ 3000 km is the thickness of the mantle and ls = 20 km, we obtain λ = 150,



Math Geosci (2008) 40: 533–573 555

Ta
bl

e
4

T
he

m
ea

n
of

th
e

fo
ur

es
tim

at
es

of
ρ
s
l s

is
6

×
10

5
K

g
m

−2
w

hi
ch

is
th

e
re

su
lt

th
at

w
e

us
e

be
lo

w
(w

e
al

so
to

ok
l s

=
20

km
,ρ

s
=

30
K

g
m

−3
,b

ut
as

lo
ng

as
l s

is
sm

al
le

no
ug

h,
on

ly
th

e
pr

od
uc

ti
s

im
po

rt
an

ta
tl

ow
fr

eq
ue

nc
ie

s)

α
ρ

0
κ

c p
Q

ν
l s

ν s
T
s

ρ
s

ρ
s
l s

Q
ua

nt
ity

E
xp

an
si

on
co

ef
f.

D
en

si
ty

T
he

rm
al

co
nd

.
H

ea
t

ca
pa

ci
ty

T
he

rm
al

flu
x

K
in

em
at

ic
vi

sc
os

ity
Sp

he
ro

-
sc

al
e

Ty
pi

ca
l

ve
rt

ic
al

ve
lo

ci
ty

at
l s

Ty
pi

ca
l

te
m

p.
flu

ct
.

Ty
pi

ca
l

de
ns

ity
flu

ct
.

Pr
od

uc
t

U
ni

ts
K

−1
K

g
m

−3
m

2
s−

1
m

2
s−

2
K

−1
K

g
s−

3
m

2
s−

1
km

m
m

/y
r

K
K

g
m

−3
K

g
m

−2

Po
ir

ie
r

(1
99

1)
3

×
10

−5
4

×
10

3
10

−6
10

3
8

×
10

−2
3

×
10

17
15

.0
2.

1
30

0
36

5.
4

×
10

5

Ja
rv

is
an

d
Pe

lle
tie

r
(1

98
9)

(u
pp

er
)

2
×

10
−5

3.
7

×
10

3
1.

5
×

10
−6

1.
26

×
10

3
0.

09
9

2.
7

×
10

17
19

.5
2.

4
27

6
20

.5
4.

0
×

10
5

Ja
rv

is
an

d
Pe

lle
tie

r
(1

98
9)

(l
ow

er
)

1.
4

×
10

−5
4.

7
×

10
3

2.
5

×
10

−6
1.

26
×

10
3

0.
09

9
4.

3
×

10
17

32
.9

2.
3

21
9

14
.4

4.
7

×
10

5

O
ve

ra
ll

2
×

10
−5

4
×

10
3

1.
5

×
10

−6
1.

2
×

10
3

0.
09

3.
1

×
10

17
24

2
34

0
26

6
×

10
5



556 Math Geosci (2008) 40: 533–573

so that the typical temperature, velocity, density horizontal and vertical fluctuations
with )x = )z = 3000 km are

)T ()x) = Tsλ
−1 ≈ 2.5 K; )T ()z) = Tsλ

−1/3 ≈ 70 K,

)ν()x) = νsλ≈ 45 cm/yr; )ν()z) = νsλ
1/3 ≈ 1.5 cm/yr,

)ρ()x) = ρsλ
−1 ≈ 0.5 K; )ρ()z) = ρsλ

−1/3 ≈ 6 K.

(3.13)

This shows that at large enough scales, the free convection zone far from boundaries
is indeed nearly isothermal (these values are fluctuations with respect to the static
diffusive solutions of the equations). The typical vertical velocity horizontal shear of
45 cm/yr is also a rough estimate of the horizontal advection velocity at the top. Fi-
nally, we can consider the Rayleigh number (Ra) which must be high for convection.
We obtain

Ra = gα)T)z3

νκ
=

(
)z

ls

)8/3

. (3.14)

Using the largest scale )z = 3000 km, ls = 20 km, we obtain Ra ≈ 106 which is
comparable to but a little smaller than other estimates (see, e.g., the review in Jarvis
and Pelletier 1989 where values 7 × 106–6 × 107 are suggested depending on the
exact specification of the boundary conditions).

We can now use these values to calculate the second order surface gravity statis-
tics; the main additional assumptions that are needed concern the details of the high
wave number convection cut-off (these details are discussed in Appendix B and imply
uncertainties of a factor of four or so). All the following mantle calculations use an
exponential cut-off at the sphero-scale defined in real space at ls = 20 km as the value
for which R(ls,0,0) = ρ2

s . The upper bounds of the mantle are considered to be flat,
lying directly underneath the crust (only the mantle contribution is shown); down-
ward continuation to this depth is used; see Figs. 4a, b for the effect of varying depths
to the top of the mantle. An additional assumption affecting the low wave number
behavior is necessary at the lower bounds of the mantle. Since there is additional
variability in the core, putting a drastic truncation at the wave number corresponding
to the bottom of the mantle km would underestimate the true variability; hence, a cut-
off corresponding to 6000 km rather than 3000 km was used. As seen in Fig. 5, this
difference is only noticeable at the lowest wavenumbers.

The surface gravity field provides one of few ways of empirically testing the
model; we therefore compared the theoretical predictions with both the global and
DNAG spectra (Fig. 5). With the optimum parameters (Table 4), the figure shows that
the contribution of the mantle to the surface gravity spectrum is barely discernable.
However, in the next section we see that out to about log10 K ≈ −5.7 (i.e., 3000 km)
that the surface gravity can be explained quite adequately by a fractal mantle-crust
density discontinuity, so that this result is not surprising. Indeed, had the model pre-
dicted an effect larger even for a factor of only 4 or so, then the absence of a clear
signature would have been difficult to explain. We should note that these conclusions
are for ensemble averaged effects only; we may expect local regions to have some-
what larger mantle contributions to surface gravity, in these regions, a mantle gravity
signature may be visible.
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Fig. 4 (a) Mantle gravity
spectrum the curves correspond
to downward continuations of
10, 20, 40, 80, 160 km (right to
left), ls = 20 km,
ρs = 30 Kg m−3. Mantle
thickness is 6000 km, so as to
partially account for the core.
(b) Mantle gravity structure
functions, ls = 20 km,
ρs = 30 Kg m−3, the curves
correspond to downward
continuations of 10, 20, 40, 80,
160 km (top to bottom)

(a)

(b)

Fig. 5 Global and DNAG gravity (the bottom, top empirical curves, respectively), the thin theoretical
curves are for the optimum estimates ρs ls = 6 × 105; the thick continuous curves are the corresponding
curves for double this: ρs ls = 1.2 × 106. In each case, the upper curve is for mantle thickness 6000 km
(to avoid an artificial drastic low wave number truncation), the lower for 3000 km. All four model curves
assume a downward continuation of 80 km
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Fig. 6 Above: comparison of
the global gravity spectrum
(magenta), with that simulated
from the global topography
(blue) using the parameter
)ρ2

mh2
0χ

2 = 2.1×1017 Kg m−2.
Putting in )ρm =
4 × 102 Kg m−3, h0 = 100 km,
we obtain χ = 11. The global
gravity and that simulated from
the topography agree over the
range of 300–3000 km

3.4 Topography and the Crust/Mantle Interface Regime (≈300–3000 km)

Up until now, we have considered the Earth’s surface as well as the mantle-crust
boundary to be flat. However, Fig. 1 showed clearly that the topography is on the
contrary scaling up to planetary scales, in addition processes of isostatic equilibrium
imply that the variations in high wave number surface topography are associated with
particularly deep “roots” (mantle-crust boundary depths). This suggests that we can
use the observed surface topography as a statistical surrogate for the overall crust
thickness if we assume that on average, the two are related by a numerical factor χ .
The following derivation corresponds thus to the Airy model of isostatic equilibrium.

In order to determine the implications of varying crust thickness for the surface
gravity, consider a crust with thickness varying as h(R) where R = (x, y) is a sur-
face position vector. This thickness takes into account the entire thickness of the crust
(including the topography), except that all the corresponding mass is considered to re-
side in a column of uniform density ρ(R′, z), and the top of the column is z = 0. The
typical crust/mantle density contrast )ρm = ρm − ρc is about 400 Kg m−3 (=3300–
2900). This uniform density approximation should not be too bad for scales compa-
rable to or larger than the thickness. If we assume that the “roots” of the topography
are χ times larger, then we have

h′(R) = χht (R), (3.15)

where ht is the altitude of the topography. Using this model (see Appendix D), we
obtain:

Eg(K) ≈ G2)ρ2
mh2

0χ
2Eht (K)K2; K < 1/H, (3.16)

i.e., in this range, Eht (K) ∝ Egeoid(K) (see (2.34)). h0 represents a mean crust
thickness about which the topography with “roots” represents a fluctuating part and
H > h0 is the thickest part of the crust encountered. Since K ≈ (1 − exp(h0K))
(see (2.2)), this formula is essentially the small K limit of a layer thickness h0; we
have ignored the flexural rigidity of the crust which—if fixed—would break the scal-
ing; presumably a scaling rigidity model is required which is beyond our scope.

We can test out the implications of the above by comparing Eg with K2Eht . If
the latter is multiplied by the factor 2.1 × 1017 G2 we obtain the excellent agreement
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indicated below over the range 300–3000 km. If h0 = 100 km, this implies χ = 11
which seems reasonable (see Fig. 6). We therefore conclude that such a fractal crust-
mantle discontinuity surface can reasonably account for the surface gravity field all
the way up to several thousand kilometers in scale.

3.5 Buoyancy Forces

One of the interesting properties of scaling models is the very long range of the
implied correlations. In particular, fluctuations of column-integrated densities can be
much larger than one would expect from classical (non scaling, Markov process type)
statistical models. Horizontal variations in column integrated density will give rise to
buoyancy forces; if these are large enough they could play a significant dynamical
role. In Appendix C, we also obtain an analytic approximation to the maximum vari-
ance of the difference in column integrated densities. Using the empirical values of
the constants (with zc = 80 km), we estimate that for the crust the maximum stan-
dard deviation is the equivalent of about 100 m of rock (this occurs for distances of
about )x = 170 km). The corresponding numerically determined spectra and struc-
ture functions are shown in Figs. 7a, b. This is substantially smaller than the observed
topographic variations, and is not likely to be an important effect. However a simi-
lar calculation for the mantle gives a much larger effect because of the much greater
mantle thickness; in this case we estimate the maximum buoyancy force to be the
equivalent of ≈1.5 km of rock (Figs. 7c, d). Since extremes may be several times
larger (especially, since due to the likely multifractal nature of the density, we expect
long or fat-tailed probability distributions), this may imply a direct role for man-
tle convection in orogenesis. Indeed, particularly large fluctuations–perhaps several
times this value–might explain volcanic “hot spots”.

4 Conclusions

The recently published high resolution spectrum of the Earth’s geoid shows two
breaks in the scaling at distances of roughly 3000 km and 100–200 km. The first clue
to modeling the corresponding surface gravity field is to note that the contribution to
the spectrum at horizontal wave number K decays exponentially with the depth of the
source. These breaks are therefore naturally associated with fundamental changes in
the Earth’s internal structure, i.e., with the thicknesses of the crust and mantle. While
this classical explanation is valid as far as it goes, it can do no more than explain the
characteristic scales of the breaks. A second clue to modeling the geoid is to note
the ubiquity of the horizontal and vertical scaling of geophysical fields including the
properties of the rocks (e.g., density, magnetization, radioactivity, seismic velocity).
This suggests the use of scaling models; for scales smaller than tens of kilometers
in the crust, this approach has been adopted by several researchers (e.g., Maus and
Dimri 1995; Dimri and Vedanti 2005) and would follow if over wide ranges, the
nonlinear dynamical processes responsible for the variability had no characteristic
scale; they were scale invariant or “scaling”. The use of scaling models has the great
advantage of automatically generating “red-noise” type scaling regimes similar to
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Fig. 7 (a) Spectrum of total
column integrated density for
zc = 10, 20, 40, 80, 160 km
(bottom to top) with
ρs = 250 Kg m−3, ls = 215 km.
(b) The structure function
corresponding to zc = 10, 20,
40, 80, 160 km with
ρs = 250 Kg m−3, ls = 215 km.
Using a mean lithosphere
density of 3 × 103 Kg m−3, the
value SIρ = 1011 Kg2 m−4

corresponds to fluctuations of
the order of 100 m of rock. The
maximum at 160 km is 1012.4,
i.e., about 500 m of rock.
(c) Total vertically integrated
fluctuations with
ρs = 30 Kg m−3, mantle
thickness 3000 km, sphero-scale
10, 20, 40, 80, 160 km. (d) The
structure function of the vertical
integral of the rock density with
mantle thickness = 3000 km
with sphero-scale = ls = 10, 20,
40, 80, 160 km, with
ρs = 30 Kg m−3. If
ρ0 = 4 × 103 Kg m−3, then the
equivalent thickness of the rock
is )z = (SIρ ()x))1/2/ρ0, i.e.,
1 km of rock corresponds to
SIρ ≈ 1013.2

(a)

(b)

(c)

that observed in boreholes. In addition, scaling processes have long range correla-
tions, huge nonclassical fluctuations, they display potentially realistic anomalies at
all scales. The first models of this type were isotropic, “self-similar”. However, as we
showed in Sect. 2.3, the high variability (slow spectral fall-off, β ≈ 1) in borehole
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Fig. 7 (Continued)

(d)

rock spectra and the corresponding low variability (rapid spectral fall-off, βh ≈ 5)
of the small scale (<100 km) surface gravity are not compatible with self-similar
(isotropic) models of rock density. A final flaw of the self-similar models is that they
are not compatible with the observed horizontal/vertical stratification of the rocks.

Following the approach used in Lovejoy et al. (2001), Pecknold et al. (2001),
Lovejoy and Schertzer (2007), we argue that while scaling is indeed a necessary
ingredient in realistic models it must be anisotropic. Using a simple analytical model
of the scaling spectrum, the first part of this paper (with various technical appendices)
works out the consequences for second order statistics of the surface gravity field. In
addition to the inner and outer breaks associated with any physical scaling regime,
there is an additional source of scale breaking due to two incompatible symmetries,
namely that of the isotropic gravitational Green’s function (r−2 law for gravity) and
the anisotropic rock density statistics. This introduces a scale break at the “sphero-
scale” (ls) where the density anomalies are roughly isotropic (“roundish”).

We apply such anisotropic scaling models to both crust and mantle density fields.
First, using (limited) borehole density data (from horizontal and vertical boreholes),
combined with continental (Bouguer) gravity survey spectra, we estimate the funda-
mental exponents for the crust as Hz ≈ 3, s ≈ 5.3 and the sphero-scale at ls ≈ 250 km
with the corresponding density fluctuations ≈215 Kg m−3. Since Hz > 1 at scales
smaller than ls , the rocks will be increasingly stratified. This model can thus read-
ily explain both the horizontal and vertical density statistics and the surface gravity
anomalies up to 100–300 km.

We then considered the contributions to surface gravity coming from the mantle
(important at larger scales). For this purpose we developed a theoretical model of
rock density variations in the mantle. This model was based primarily on dimensional
analysis of the equations of convection at high Prandtl and Rayleigh numbers, and
predicts Hz = s = 3 and ρs = 30 Kg m−3, ls = 20 km. The mantle contribution to
the (mean) surface gravity spectrum predicted by this model was of the same order,
but somewhat smaller than the observed surface gravity spectrum at about 1000 km
scales.

The final source of surface gravity that we consider arises from the large crust-
mantle density contrast and the topography. Using a simple model combined with the
ETPO5 global topography data (at 5′ of arc), as a surrogate for the crust thickness
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Table 5 The various exponents and values used in this paper. The mantle exponents are purely theoretical,
ρs , ρs ls are from Table 4 whereas the crust values are purely empirical, most being obtained from Leary
(1997) and Shiomi et al. (1997) density data with a single DNAG (Bouguer) gravity constraint

Hz s ls ρs ρs ls

Mantle (from theory) 3 3 20 km 30 Kg m−3 6 × 105 Kg m−2

Crust (from Leary and Shiomi data) 3 5.3 215 km 250 Kg m−3 5.4 × 107 Kg m−2

(corresponding to an assumption of Airy isostacy), we were able to quantitatively
account for the surface gravity statistics over the range 300–3000 km.

The overall combined density/gravity model advocated here (see Table 5 for
a summary, see Lovejoy et al. (2005) in the site www.physics.mcgill.ca/~gang/
multifrac/index.htm for corresponding multifractal simulations) thus involves sepa-
rate anisotropic scaling regimes for the mantle and crust separated by a fractal density
discontinuity and seems capable of explaining the surface gravity statistics from scale
of at least meters out to about 3000 km (where core/mantle boundary and core con-
tributions are important). Since the mantle contribution to surface gravity was found
to be smaller than that due to the fractal crust-mantle boundary, the overall model
involved four internal parameters (Hz, s, ls , zc), and one additional external parame-
ter (the crust/topography thickness ratio χ , see Table 5). Since the model predicts the
second order statistical behavior of the density field in both horizontal and vertical di-
rections, as well as the gravity spectrum, it is still fairly parsimonious. Although this
study was deliberately confined to second order (spectral) statistics, the full scaling
will likely show the density and the gravity to be multifractals (see Pecknold et al.
2001). They may enable us to make realistic multifractal models of the density and
gravity.
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Appendix A: Details of the Crust Density Formulae

A.1 The Basic Scaling of the Crust Density: Infinite Crust Thickness Results

For Hz 2= s, the horizontal spectrum is

Eρ(K) = 2πP0K · 2
∫ ko

kc

dkz

((K
ks

)Hz + kz

ks
)s/Hz

= −4πP0K
Hz

s − Hz
ks

((
K

ks

)Hz

+ kz

ks

)−s/Hz+1∣∣∣∣
ko

kc

, (A.1)

http://www.physics.mcgill.ca/~gang/multifrac/index.htm
http://www.physics.mcgill.ca/~gang/multifrac/index.htm
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where kc, ko are the inner and outer crust scales (there is a factor of 2 for the nega-
tive kz). Taking kc = 0, ko = ∞, we have

Eρ(K) = Cc2(2π)4 Hz

s − Hz
ρ2

s k−1
s

(
K

ks

)1+Hz−s

; s > Hz, (A.2)

i.e., βx = s − Hz − 1. Similarly, for the vertical spectrum

Eρ(kz) = 2π
∫ ∞

0

KdK

((K
ks

)Hz + (
kz

ks
))s/Hz

, (A.3a)

Eρ(kz) =
Cc(2π)4(( 2

Hz
)(( s−2

Hz
)

Hz(( s
Hz

)
ρ2

s k−1
s

(
kz

ks

)(2−s)/Hz

; s > 2, (A.3b)

i.e., βz = (s − 2)/Hz. We can calculate the (2-D) horizontal structure function using

S()X,0) = 2
(2π)2

∫ ∞

0

(
1 − J0(K)X)

)
E(K)dK (A.4)

and the (1-D) vertical structure function with

S(0,0,)z) = 2
π

∫ ∞

0

(
1 − Cos(kz)z)

)
E(kz) dkz (A.5)

(there is an extra factor of 2 from the integration from −∞ to 0). Using ls = 2π
ks

we
obtain

Sρ()X,0) = ρ2
s

(
)X

ls

)s−Hz−2

, s > Hz + 2 (A.6)

(i.e., Sρ()X,0) ∝)Xβx−1). If Cc is chosen to be equal to

Cc = πHz−s(s − Hz)((
s−Hz

2 )

8Hz(−((1 + Hz−s
2 ))

(A.7)

then Sρ(ls ,0,0) = ρ2
s , i.e., ρ2

s is the sphero-scale fluctuation variance. Since there is
a low wavenumber divergence, this is the only natural choice of reference scale for
defining ρs . Putting s = 5.3, Hz = 3, we obtain Cc = 8.66 × 10−4. With this choice
for Cc in (A.7), we obtain the following for the vertical structure function

Sρ(0,0,)z) = Bρzρ
2
s

(
ks)z

2π

)( s−2
Hz

)−1

= Bρzρ
2
s

(
)z

ls

)( s−2
Hz

)−1

; s −2 > Hz (A.8)

with the constant Bρz given by

Bρz = Cc(2π)
2+( s−2

Hz
)
(( 2

Hz
)(( s−2

Hz
)(( s−2

Hz
+ 1) sin(π2 ( s−2

Hz
))

Hz(( s
Hz

)
(A.9)
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(i.e., Sρ(0,0,)z) ∝ )zβz−1). Putting s = 5.3, Hz = 3, we obtain Bρz = 0.124. The
fact that this dimensionless constant is not unity reflects the fact that the real space
and Fourier space sphero-scales are not identical. Indeed, if we define the real space
sphero-scale lrs as the scale at which the vertical and horizontal structure functions
are equal (S(lrs,0,0) = S(0, lrs,0) = S(0,0, lrs)), then we obtain

lrs

ls
= B

1
βx−βz
ρz (A.10)

which with the above values, i.e., βx = 1.3, βz = 1.1, yields a ratio 2.96 × 10−5.
Using ls = 250 km, this predicts lrs ≈ 1 m, but this value is so sensitive to the small
difference βx − βz that it should not be taken too seriously. In addition, this estimate
does not take into account the finite crust thickness which will affect lrs as determined
by the structure functions as defined here (but will not affect ls ). However, the small-
ness of the difference does indicate that direct (real space) measurements of lrs (from
rock outcrops, for example) are thus likely to be highly variable.

A.2 The Effect of Finite Crust Thickness on Density and Gravity Statistics

The finite thickness of the lithosphere is important so that we must consider the case
kc 2= 0 (the results will be insensitive to the high wave number cut-off which we
therefore put at ∞). For the horizontal density spectrum, from (A.1), we have

Eρ(K) = 4πP0
Hz

s − Hz
ksK

((
K

ks

)Hz

+ kc

ks

)−s/Hz+1

, s > Hz. (A.11)

With respect to the infinite lithosphere behavior, we see that there is a new
Eρ(K) ≈ K regime for K < ks(kc/ks)

1/Hz .
For the corresponding horizontal structure function, there is no simple analytic

expression, however, for the total variance

Rρ(0,0,0) =
〈
ρ2〉 =

∫ ∞

0
Eρ(K)dK =

∫ ∞

kc

Eρ(kz) dkz

= 2Cc(2π)4ρ2
s

(
kc

ks

)1+ 2−s
Hz (( 2

Hz
)(( s−2

Hz
− 1)

Hz(( s
Hz

− 1)
. (A.12)

This expression diverges as kc → 0 (explaining why we did not take ρs to be defined
as the total variance). This determines the maximum of the density structure function.

The corresponding gravity spectrum is

Pg(K) = (2πG)22
∫ ko

ki

Pρ(K, kz)
dkz

K2 + k2
z

= 2(2πG)2 P0c

K

(
Is,Hz(K, ko) − Is,Hz(K, ki)

)
, (A.13)
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where for s 2= Hz

Is,Hz(K, kz) =
(

Hz

s−Hz

)
Im

[
‖(K,kz)‖Hz−s

‖(K,−iK)‖Hz 2F1

((
1 − s

Hz

)
,1,

(
2 − s

Hz

)
,

‖(K,kz)‖Hz

‖(K,−iK)Hz

)]
,

2F1(a, b, c, z) = ((c)
((b)((c−b)

∫ 1
0 tb−1(1 − t)c−b−1(1 − tz)−a dt

(A.14)

(the K−1 is used in the definition of I so as to make the latter dimensionless), where
2F1 is the hypergeometric function with integral representation indicated. For the
case ko = ∞, and large K , we obtain the simple result independent of Hz, as long as
Hz > 1,

Is,Hz(K,∞) ≈ π

2

(
K

ks

)−s

; K 0 ks,

Is,Hz(K,0) ≈ O

((
K

ks

)1−s−Hz

logK

)
; K 0 ks.

(A.15)

Hence, for any s > 0,Hz > 1, the low kz contribution is negligible, so that

Eg(K) = Chρ
2
s k−3

s G2
(

K

ks

)−s

, K 0 ks (A.16)

with the dimensionless constant Ch, given by

Ch = Cc

2
(2π)7. (A.17)

Using s = 5.3, Hz = 3, we obtain Ch = 167.
Using this formula to estimate the structure function of the surface gravity and

geoid, integrating in the horizontal from high frequencies down to ks , we obtain

Sg()X,0) ≈ Ch

8π2 G2ρ2
s k−2

s

()Xks)
2

s − 3
; )Xks < 1,

Sgeoid()X,0) ≈ Ch

8π2

G2

g2
z

ρ2
s k−2

s

()Xks)
2

s − 1
; )Xks < 1.

(A.18)

In the case of gravity, the structure function saturates at distances a little larger than
)x = ls ; for the geoid it changes to another power law.

Also, for the low frequency regime, we obtain (to leading order)

Is,Hz(K,∞) ≈ π
Cos(π2 (1 − s

Hz
))

Cos(π2 (1 − 2s
Hz

))

(
K

ks

)−s/Hz

; K / ks; (A.19)

whereas

Is,Hz(K,0) ≈ − Hz

s − Hz

(
K

ks

)−s−1+Hz

; K / ks. (A.20)
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Hence, the contribution from large kz dominates for s < Hz, while for s > Hz > 1
the small kz contribution dominates. Overall, we obtain for the energy spectrum

Eg(K) = Clρ
2
s k−3

s G2
(

K

ks

)−s/Hz

; s < Hz,

Eg(K) = Clρ
2
s k−3

s G2
(

K

ks

)−s−1+Hz

; s > Hz, K / ks,

(A.21)

with the dimensionless constant Cl , given by

Cl = Cc(2π)7
Cos(π2 (1 − s

Hz
))

Cos(π2 (1 − 2s
Hz

))
, s < Hz,

Cl = 2Cc(2π)6 Hz

s − Hz
, s > Hz.

(A.22)

Using s = 5.3, Hz = 3, we obtain Cl = 140. Hence, for the parameters Hz > s, we
obtain

Eρ(K)

Eg(K)
= Hz

2π3(s − Hz)G2 k2
s

(
K

ks

)1+Hz

; K 0 ks,

Eρ(K)

Eg(K)
= K2

(2π)2G2 ; K / ks.

(A.23)

For the case Hz = s = 3, see below. This shows clearly that for Hz > 1, the stratifi-
cation does not affect the low wavenumber regime; while on the contrary, it totally
determines the high wave number behavior.

In the case of the surface gravity, the finite cut-off at kc leads to a third regime
as outlined in Lovejoy et al. (2001) for the aeromagnetic case. This can be seen by
defining the variable z

z = ‖(K, kc)‖Hz

‖(K,−iK)‖Hz
. (A.24)

We then have three regimes for kc > ks :

z ≈ 1; K 0 ks

(
kc

ks

)1/Hz

,

z ≈ kc

kc

(
K

ks

)−Hz

; ks

(
kc

ks

)1/Hz

> K > ks,

z ≈ ikc

kc

(
K

ks

)−1

; ks < K.

(A.25)

However, using the estimate kc/ks ≈ 3 (ks = 2π/250 km, kc = 2π/80 km) we find
that the middle regime (which has k−(s−1) behavior; see Lovejoy et al. 2001) holds
over a mere factor of 31/3 and is thus is too limited in range to be noticeable.
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Appendix B: Details of the Mantle Density Statistics

B.1 The High Wavenumber Cut-Off

Contrary to the crust case with s > Hz, for the mantle, the convection model gives
s = Hz = 3 which implies high wave number divergences. However, the sphero-scale
plays the role of high wave number cut-off, with the result that many of the statistics
are somewhat sensitive to the exact high wave number details. Given a model for the
cut-off, a related problem is to find the most physically appropriate definition of the
sphero-scale. In this appendix, we discuss both of these issues. The question of the
cut-off will be illustrated by comparing two simple models.

(1) Wavenumber truncation. If we introduce a drastic cut-off in Fourier space at
kz = ks , then we obtain the following horizontal density spectrum

Eρ(K) = 2πP0K · 2
∫ ks

0

dkz

(K
ks

)3 + kz

ks

= 2Cm(2π)4ρ2
s k−2

s K log
(

1 +
(

ks

K

)3)

(B.1)
(the factor of 2 is from the integration over negative wave numbers); thus,

Eρ(K) ≈ 2Cm(2π)4ρ2
s k−2

s K log
(

ks

K

)3

; K / ks. (B.2)

The above is the (log corrected) βx = −1 behavior of the mantle convection
theory. We can now calculate the total variance of the density fluctuations

〈
ρ2〉 = R(0,0,0) = 1

(2π)2

∫ ks

0
Eρ(K)dK = 2Cmρ

2
s (2π)2

√
3
π

6
. (B.3)

The drawback of this drastic Fourier space cut-off is that it is physically unrealis-
tic, and mathematically it leads to a correlation function with artificial nonphysi-
cal oscillations about zero

Rρ()X,0) = 1
(2π)2

∫ ∞

0
Eρ(K)J0(K)X)dK

≈ 2CK(2π)2ρ2
s

ks)X
J1(ks)X); )X 0 k−1

s . (B.4)

(2) Exponential cut-off. It is more physically realistic to use an exponential cut-off
which is less drastic and has the additional advantage of involving a more realistic
correlation function. For this model, we take the modified spectrum

Pρ(K, kz) = P0e
−‖(K,kz)‖3∥∥(K, kz)

∥∥−3
. (B.5)

We thus obtain

Eρ(K) = 4πP0Kks(

(
0,

(
K

ks

)3)
, (B.6)
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where ((0, x) =
∫ ∞
x t−1e−t dt is the incomplete Gamma function. For K < ks ,

we have the following expansion

Eρ(K) ≈ 4πP0Kks

(
−γE − log

(
K

ks

)3

+
(

K

ks

)3

+ · · ·
)

, (B.7)

where γE=0.57... is the Euler Gamma. Note that the leading behavior for small
K is K logK3 which is identical to the result for the truncated high frequency
spectrum, but the −2πP0KksγE is new. Also,

Rρ(0,0,0) =
〈
ρ2〉 = 1

(2π)2

∫ ∞

0
Eρ(K)dK = 2P0k

3
s(( 2

3 )

4π
. (B.8)

We also have a more realistic (nonoscillating) correlation function

Rρ()X,0) = 1
(2π)2

∫ ∞

0
Eρ(K)J0(K)X)dK

≈ 2HzCm

(
2πρs

ks)X

)2

= 2HzCm

(
ρs ls

)X

)2

; )X 0 k−1
s (B.9)

(with Hz = 3). This exponential cut-off probably gives us the best estimate of Cm.

B.2 The Definition of ρs

Given the cut-off model, there are three obvious choices of definition of ρs :

ρ2
s1 = Rρ(0,0,0),

ρ2
s2 = Rρ(ls ,0,0) = Rρ

(
2π
ks

)
,

ρ2
s3 =

(
)X

ls

)2

Rρ()X,0,0); )X 0 ls .

(B.10)

Depending on which we use, we obtain different constants Cm. Rρ(0,0,0) gives the
physically significant total variance. The second and third definitions are not very
different; they only differ because the power law behavior of the correlation function
is only asymptotically exact. The main choice is between either of these or the first,
with the difference arising because of the non abrupt cut-off in the variance at the
sphero-scale (a Fourier space truncation will in fact have variance at scales <ls com-
parable to the exponential cut-off). We favor the first definition, since it seems more
physically relevant; in any case the differences are not large as Table 6 indicates.

Appendix C: Column Buoyancy

The spectrum of the running vertical integral of the density responsible for the total
column buoyancy force for a column thickness lz is given by

PIlz,ρ(K, kz) =
∣∣∣∣

∫ lz

0
eikzz dz

∣∣∣∣
2

Pρ(K, kz), (C.1)
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Table 6 This table shows how two different definitions of ρs and different high wave number cut-offs
affect the constant Cm. Since the exponential cut-off is probably more realistic, and physically ρ2

s = total
variance is more significant, we use the value Cm = 0.0187

ρ2
s1 = Rρ (0,0,0) ρ2

s3 = ()X
ls

)2Rρ ()X)
ρs2
ρs1

= (
Rρ (ls ,0,0)
Rρ (0,0,0) )1/2

Exponential cut-off Cm = 1
(2π)2(( 2

3 )
= 0.0187 Cm = 1/6 = 0.166 2.98

Truncation Cm =
√

3
4π3 = 0.0139 Cm = 0.25 4.23

where the first term is modulus squared of the Fourier transform of the indicator
function of the integration interval. This yields

PIlz,ρ(K, kz) =
(

2 sin(
kzlz

2 )

kz

)2

Pρ(K, kz) = 4 sin2(
kzlz

2 )P0

k2
z ((

K
ks

)Hz + kz

ks
)s/Hz

. (C.2)

To calculate the horizontal spectrum of the vertical integral, we integrate as usual over
the entire crust (due to a low frequency divergence, a low frequency cut-off is indeed
necessary). We use for this the simplest Fourier truncation model at wave number
kc = 2π/lc, lc = crust thickness

EIlz,ρ(K) = 4πKP0

∫ ∞

kc

4 sin2(
kzlz

2 ) dkz

k2
z ((

K
ks

)Hz + kz

ks
)s/Hz

. (C.3)

If we integrate over the entire column, then lc = lz and we obtain

EIρ(K) = 4πKP0

∫ ∞

kc

4 sin2(
kzπ
kc

) dkz

k2
z ((

K
ks

)Hz + kz

ks
)s/Hz

. (C.4)

The sine factor is mostly important for kz < kc, but the latter wave numbers are cut-
off anyway, hence it makes a small change to the results. For many calculations we
can therefore use the following approximation

EIρ(K) ≈ 4πKP0

∫ ∞

kc

dkz

k2
z ((

K
ks

)Hz + kz

ks
)s/Hz

. (C.5)

Note that the large distance bound on the structure function is

SIρ(∞) = 2RIρ(0) = 2
〈
ρ2

I

〉
= 1

π

∫ ∞

kc

Eρ(kz)
dkz

k2
z

. (C.6)

Using this approximation, we obtain the analytic result

SIρ(∞) = BIρ(2π)2ρ2
s k−2

s

(
kc

ks

)−( s−2
Hz

)−1

,

BIρ = Cc

4π(( 2
Hz

)(( s−2
Hz

)

(s − 2 + Hz)(( s
Hz

)
.

(C.7)
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If we include the sine factors, the corresponding expression is the same as the above
but with corrections involving hypergeometric functions; numerically, for s = 5.3,
Hz = 3, the difference is a factor of 1.76 (see Fig. 7). Putting the high frequency
cut-off at ∞, we obtain

EIρ(K) = 2Cc(2π)4ρ2
s k−3

s

(
ks

kc

)1+s/Hz
(

K

ks

)

× 2F1

(
s

Hz
,1 + s

Hz
,2 + s

Hz
,−

(
ks

kc

)(
K

ks

)Hz
)

; s > −Hz.

(C.8)

This has the following low and high wave number regimes

EIρ(K) = 2Cc(2π)4ρ2
s k−3

s

(
ks

kc

)1+s/Hz
(

K

ks

)
; K / ks

(
kc

ks

)1/Hz

,

EIρ(K) = 2Cc(2π)4ρ2
s k−3

s

Hz + s

Hz

(
ks

kc

)(
K

ks

)1−s

; K 0 ks

(
kc

ks

)1/Hz

.

(C.9)

Appendix D: Estimating the Contribution from the Crust/Mantle Interface,
Topography

If we now consider the case |(R−R′)| > h(R′), we have the following approximation
to the Green’s function in (2.1)

gz(R|R′) ≈ Gρc(R
′)h(R′)2

2|(R − R′)|3
(

1 − 3
4

(
h(R′)

|(R − R′)|

)2

+ · · ·
)

;

h(R′) /
∣∣(R − R′)

∣∣, (D.1)

where gz(R|R′) indicates the gravity at the surface location R due to a column at
R′. We now use the same approximation on a column in the mantle (density ρm),
assumed to lie between depths h and hm 0 h. Using the same approximation, and
summing the contribution from the crust and mantle, we obtain

gz(R|R′) ≈ − G

2|(R − R′)|3
(
h(R′)2)ρm + h2

mρm

)
, h(R′) /

∥∥(R − R′)
∥∥. (D.2)

The fluctuations in the column to column average mean column density (h2
mρm) can

be neglected compared to the term h(R′)2)ρm due to the contrast of the means
()ρm ≈ 400 Kg m−3). This can be seen by estimating the statistics of the column
integrated density fluctuations which for the crust yields ρI ≈ hmρm ≈ 13 Kg m−3

which is much smaller than )ρm (the analogous calculation for the mantle yields a
column averaged variation of only 2–3 Kg m−3).

Neglecting the h2
mρm term, we obtain

gz(R) ≈ −G)ρm

2

∫

|R−R′|>H

h2(R′)d2R′

|R − R′|3 . (D.3)
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The range of integration must be such as to respect the thin crust approximation
(|(R − R′)| > h(R′) > H ; H is the typical thickness; it should be of the order of the
largest h values encountered). For these scales the above power law convolution is a
fractional differentiation of order 1 (integration order −1), so that in Fourier terms,
we have the following relation between 2-D transforms

g̃z(K) ≈ −G)ρm

2
h̃2(K)K; K < 1/H. (D.4)

Taking the complex conjugate equation and multiplying the two and after ensemble
averaging, we finally obtain

Eg(K) ≈ G2)ρ2
m

4
Eh2(K)K2; K < 1/H, (D.5)

where Eh2(K) is the horizontal spectrum of the square of the thickness. We can
estimate the latter by considering that h is a constant thickness h0 plus a fluctuating
part h′

h(R) = h0 + h′(R), (D.6)

so that

Eh2(K) = Eh2
0
(K) + 4h2

0Eh′(K) + Eh′2(K). (D.7)

The term Eh2
0
(K) is proportional to δ(K), and if h0 is larger than the typical fluctua-

tion, Eh′2(K) < Eh(K), so that

Eh2(K) ≈ 4h2
0Eh′(K). (D.8)

To test the consequences for the gravity spectrum, we can use the topography as
surrogate for h′. If we assume that the “roots” of the topography are χ times larger,
then we have

h′(R) = χht (R), (D.9)

where ht is the topography. Overall, we obtain

Eg(K) ≈ G2)ρ2
mh2

0χ
2Eht (K)K2; K < 1/H, (D.10)

i.e., in this range, Eht (K) ∝ Egeoid(K) (see (2.30)), Fig. 6.
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